

先端研究施設共用イノベーション創出事業 [産業戦略利用] フォトンファクトリーの戦略的産業利用

課題番号: 2008I001
研究責任者: 安川 勝正 (京セラ株式会社)
利用施設: 高エネルギー加速器研究機構 放射光科学研究施設 BL-9A
利用期間: 平成 20 年 4 月~21 年 3 月

XAFS 法による BaTiO₃ セラミックス中の添加物の局所構造解析 Local structure analysis of dopant in BaTiO₃ ceramics by X-ray absorption fine structure

安川 勝正¹、松村 大樹²、西畑 保雄²、新田 清文³、稲田 康宏³、野村 昌治³ Katsumasa Yasukawa¹, Daiju Matsumura², Yasuo Nishihata², Kiyofumi Nitta³, Yasuhiro Inada³, Masaharu Nomura³

¹京セラ株式会社、²日本原子力研究開発機構、³高エネルギー加速器研究機構 ¹Kyocera Corporation, ²JAEA, ³KEK,

アブストラクト: BaTiO₃(BTO)に Ca を添加した Ba_{1-x}Ca_xTiO₃ (BCTO) は BTO に比べて自発分極が 大きく、キュリー温度が高いという特徴を有する。誘電特性に与える Ca の添加効果を X 線吸収微細 構造 (XAFS) により調べた。CaTiO₃(CTO)および BCTO の XANES スペクトルの実測値とシミュレ ーションの比較により、Ca は Ba(A)サイトに配位することがわかった。BCTO(x=0.05)の室温の EXAFS スペクトルの解析より、Ca-O (第一近接) のデバイワラー因子は Ba-O に比べ大きな値を持つことが わかった。室温から 200℃における EXAFS 実験により、正方晶から立方晶へ相転移するキュリー温 度より高温においても、Ca-O のデバイワラー因子は大きな値を維持することがわかった。

 $Ba_{1-x}Ca_xTiO_3$ (x=0.05) (BCTO) ceramics has larger spontaneous polarization, and a little higher Curie temperature *T*c than $BaTiO_3$ (BTO). We have studied the local structure of Ca in BCTO by X-ray Absorption Fine Structure (XAFS) analyses. A comparison between experimental and calculated XANES spectra shows Ca dopants are located at the Ba site. Analyses of radial structure functions of EXAFS spectra shows that the Ca-O in BCTO (x=0.05) has a larger Debye-Waller factor than Ba-O in the BTO specimen. By high temperature EXAFS measurements, it was found that this large Debye-Waller factor was maintained above Curie temperature.

<u>+</u>*-*ν*-*ν: BaTiO₃, Ca, MLCC, XAFS (X-ray absorption fine structure)

1. はじめに: 電子機器の小型化に伴い、これに実装される積層セラミックコンデンサ (MLCC)も小型化、大容量化が進んでいる。さら に、MLCCを実装した電子機器が電源や自動車 用途に使用されることもある。例えば、小型電 源において、内部回路が部分的に100℃を超える 場合もあり、それを保証するためには、125℃の 動作保証ができる MLCCを必要とする。さらに 厳しい環境として、自動車のエンジン付近に利 用される電子機器に搭載される MLCC として、 150℃の動作保証ができる製品が求められてい る。厳しい使用環境でも動作保証できる小型大 容量 MLCC の需要は大きく見込まれている。

小型大容量 MLCC の主な材料は BaTiO₃(以下、 BTO)である。BTO は強誘電体ペロブスカイト型 酸化物であり、高い誘電定数、高周波領域にお ける良好な特性、さらには高い信頼性をもつた めに、広くMLCCに利用されている。純粋なBTO は 130℃付近に常誘電体から強誘電体への相転 移があるために、その相転移温度(以下、キュ リー温度:Tc)以上の温度領域では、誘電率が 低下する。この為、高温領域で大きな静電容量 を得ることは難しい。従って、先述の高温で動 作保障が必要なMLCCには、高温領域で静電容 量が安定化するような誘電体材料が求められる。 その実現方策のアイデアとして、BTOのTcを高 温にシフトさせることが挙げられる。

今回の研究において、我々は BTO に対する Ca の添加効果について着目した。Ca は Pb や Bi と同様に BTO の Tc を高くすることが可能な元 素として知られているからである。しかしなが ら、BTO に対する Ca 添加によるキュリー温度 上昇のメカニズムはこれまでに十分に明らかに されていない。誘電特性に与える添加元素の機 能を明らかにすることは大変意味深く、その機 能発現のメカニズムを理解することにより次の 材料開発への設計指針が得られると考えている。

これまでに X 線吸収微細構造 (XAFS) を利 用した BCTO に関する報告²⁴がいくつかなされ ており、Caの K 吸収端の XANES を測定し、第 一原理計算により XANES スペクトルを計算し、 Caの占有サイトや電子状態について議論がなさ れている。しかしながら、EXAFS に関する報告 はなされていない。

我々の研究においても、すでに第一原理計算 や放射光を利用した XAFS 実験により、BCTO における Ca が Ba(A)サイトを占有すること、ま た Ba-O に比べ Ca-O が大きなデバイワラー因子 を有することを確認してきた。しかしながら、 CaのK吸収端が4keV付近にあり、このエネル ギー領域で解析可能な EXAFS スペクトルを得 るためには、5時間程度の計測時間を要し、多く の試料について系統的な実験や、温度を変化さ せる実験が限られたビームタイムにおいて十分 に出来ていなかった。そのため、今回の高エネ ルギー加速器研究機構(KEK)フォトンファクト リー(PF)における実験では、CaのK吸収端近傍 で光強度が十分に確保できるビームライン BL-9A を利用し、BCTO における Ca の局所構造 の Ca 濃度依存性および温度依存性を明らかに することを研究目的とした。

実際の MLCC 誘電体材料として有望な x=0.05 以下の低濃度 BCTOにおける Caの局所構造を明 らかにすること、また、高温 EXAFS 実験により キュリー温度における相転移の前後で Ca の大 きなデバイワラー因子の変化を直接的に観察す る。これらの実験により、Ca を添加した BCTO の温度特性等の特性発現機構を理解する基礎デ ータを取得できると考える。Ca の添加効果を解 明できれば、誘電特性に優れ、高温域での動作 保証が可能な誘電体材料の設計指針が得られる ため、次世代の小型大容量かつ高温保証 MLCC の開発に貢献することが可能となる。

2. 実験:

BTO, BCTO(x=0.01, 0.02, 0.03, 0.04, 0.05), お よび標準試料 CaTiO₃(CTO)の粉末試料として、 堺化学株式会社製の平均粒径 350nm の粉末を用 いた。誘電特性を測定するために、通常のセラ ミックスの合成プロセスに従い、バインダー混 合し、ペレットを成形した。ペレットは 1350℃ で大気焼成され、径 14mm φ, 厚さ 1mm 程度の 焼結体を得た。得られた焼結体の誘電特性の温 度依存性は LCR メータ (Model 4284A, Agilent Technologies Japan) を用いて、-55℃から+150℃ の範囲で測定された。

Caの K 吸収端 (4.038keV) における XAFS 実 験は KEK-PF の BL-9A を利用した。実験は 24hr および48hrの2回のビームタイムに分けて行わ れた。Si(111)により分光した放射光を試料に入 射した。試料中の Ca 濃度が低いために、XAFS スペクトルの計測は19素子半導体検出器(SSD) を用いた蛍光法により行った。粉末試料からの 余分な散乱 X 線の混入を防ぐために、SSD の先 端部にソーラースリットを付けて計測を行った。 実験レイアウトを図1に示す。高温測定時には、 高温試料セルを用いて、室温(25℃), 100, 150, 200℃の測定を行った。比較対象としての Ba の K 吸収端(37.45keV)の XAFS 実験は、SPring-8 (JASRI 高輝度放射光科学研究センター)の課 題として実施した。SPring-8/BL-14B2 を利用し た透過法実験により XAFS スペクトルを得た。 XAFS スペクトルの解析にはプログラムパッケ ージ IFFEFIT⁵ および REX ver.2.3 (株式会社 Rigaku)を用いた。

図 1 BL-9A における 19 素子半導体検出器 (SSD)を用いた実験レイアウト

3. 結果および考察:

BTO および BCTO(x=0.05)のバルク体の誘電 率の温度特性を図2に示した。BTOおよびBCTO の*T*c はそれぞれ130.1℃,135.0℃であり、x=0.05 の BCTO の*T*c は凡そ5℃高くなった。この結果 は、Mitsui ら¹が報告した x=0.08 の BCTO の*T*c が136℃であることと同様の結果である。また、 BCTO の正方晶から斜方晶への相転移温度も BTO より低くなった。それらの転移温度のシフ トによって、結果的に BCTO の室温の誘電率は BTO よりも低くなっている。

図2 誘電率の温度特性 (測定条件:1kHz,1Vrms)

図 3 に Ca 濃度が異なる Ba_{1-x}Ca_xTiO₃ (x=0.01, 0.02, 0.03, 0.04 0.05)の XANES スペクトルを示す。 Ca濃度が低いためにBCTO に関してはすべて19 素子半導体検出器を用いた蛍光法で測定し、 CTO については透過法で測定した。PF BL-9A の 光強度と 19 素子半導体検出器によって、x=0.01 の試料においても、S/N 比の大きな XANES スペ クトルを得ることができた。CTO と BCTO の XANES スペクトルには pre-edge 領域、4035eV 付近の shoulder、4055eV 付近の構造に違いが見 られる。

図 3 Ba_{1-x}Ca_xTiO₃ (x=0.01, 0.02, 0.03, 0.04 0.05) の XANES スペクトル

BCTO における Ca の占有サイトを調べるため に FEFF による XANES のシミュレーションを行 った。図4に (a)CTO, (b)BaTiO₃-Ba サイト置換 モデル、(c)BaTiO₃-Ti サイト置換モデルの計算結 果を示す。FEFF の計算はそれぞれ BaTiO₃の結 晶構造を元に直径 20Åのクラスターを用いて行 った。クラスターに含まれる原子数はそれぞれ (a)381, (b)305, (c)326 である。

図 4 FEFF による XANES スペクトルのシミュ レーション(a)CaTiO₃モデル、(b)BaTiO₃-Ba サイ ト置換モデル、(c)BaTiO₃-Ti サイト置換モデル

図4(a)はCTOモデルのシミュレーション結果 であるが、図3におけるCTOの実測XANESスペクトルをよく再現していることがわかる。また、BCTOにおけるCaの占有サイトについては、 図 4(b), (c)および図 3 との比較から、Ca は Ba(A) サイトを占有しているものと考えられる。

次に室温における Bangs Can of TiO3の EXAFS ス ペクトルの解析結果について述べる。試料中の Ca が低濃度であるため、検出器として 19 素子 SSD を用いた。Ca は 4keV 付近に K 吸収端があ り、このエネルギーでは粉末回折が生じ、19個 存在するそれぞれの素子には、Caの蛍光以外の 回折線が混入していた。従って、EXAFS 解析に 使用する 2.5≦k≦9(Å⁻¹)の波数範囲に回折の影 響が少なかった素子のデータだけを足し合わせ て使用した。解析は IFEFFIT(Athena, Artemis)を 使用した。図5にBa_{0.95}Ca_{0.05}TiO₃のCaK吸収端 の動径構造関数の実験値(赤)とフィッティン グ(緑)の結果を示した。CaがAサイトに存在 する場合、最近接原子は酸素(12配位)となる。 散乱元素が軽元素であるために、フーリエ変換 の重みkⁿのn=1で解析を行った。フーリエ変換 は 2.5 $\leq k \leq 9(A^{-1})$ の範囲で行った。フィッティ ングは R 空間で行い、1.2≦R≦5.2(Å)の範囲で 行った。フィッティングは5シェルで行った。 フィッティングに使用したパラメータは dE(各 シェル共通)、R、C₂、CN(理論値:固定)、S₀²(FEFF 計算値:0.924 固定)とした。図5の動径構造関数 に見られる 1.2 ≤ R ≤ 3.3(Å)のピークの Ca-O1 シ ェルおよび Ca-Ti シェルのフィッティング結果 を表1に示す。

図 5 $Ba_{0.95}Ca_{0.05}TiO_3 の Ca K 吸収端の動径構造$ 関数(測定温度: 25°C)赤色実線が実験値、緑色実線がシミュレーション。

主 1	7,	~~~ /	いょが注田
衣工	1	ツノイ	イク疝木

シェル	Ca-O1	Ca-Ti
R (Å)	2.75(8)	3.48(4)
C_2 (Å ²)	0.050(7)	0.021(4)

Ba K 吸収端の実験より BTO において Ba の最 近接原子である酸素との結合距離は 2.82(1)Å、 Ba-O の C₂は 0.0050(10)Å²であった。BCTO に おける Ca-O と BTO における Ba-O 結合距離は 誤差の範囲で一致しているが、それぞれのデバ イワラー因子には顕著な違いが確認できた。 Ba-O は 0.0050(10)Å² であるのに対して、Ca-O は 0.050(7)Å² と一桁大きなデバイワラー因子 を有することがわかった。この結果は、これま でに行ってきた第一原理計算による構造最適化 の結果から計算できるデバイワラー因子が大き な値を持つこととも矛盾しない。したがって、 静的な(構造起因)の要因でデバイワラー因子 が大きくなっているものと推察している。

続いて、100, 150, 200℃における高温 EXAFS 実験により得られたデバイワラー因子 C₂を図 6 に示した。

図 6 デバイワラー因子の温度依存性 (Ca-O1, Ca-Ti, Ca-Ba2 についてプロットした。)

図 6 より BCTO(x=0.05)の *T*c よりも高温において、最近接酸素原子の大きなデバイワラー因子は変化がないことがわかった。

これらの実験結果から、CaのようにBaより もイオン半径が小さなカチオン添加は、添加元 素の局所構造に局所的な歪みを形成し、Tiの分 極を安定化させている可能性があると考える。 最後に、CaはPbやBiと異なり環境に優しく、 安価な元素であるため、BTO系材料の誘電特性 改善に有効に利用できると考えられる。

4. まとめ:

BCTO の XAFS 実験により、BCTO の Ca の局 所構造に関する以下の知見が得られた。 (1)BCTO における Ca は Ba(A)サイトを占有する。 (2)Ca の最近接酸素原子(12 配位)は大きなデ バイワラー因子をもち、Tcより高温でも大きな 温度依存性がみられない。

これらの結果は、BCTOにおける Ca の局所構 造の特異性を顕著に示すものである。今後これ らの結果からキュリー温度が上昇するメカニズ ムを考察していく。また、実際に MLCC 材料と して、キュリー温度や分極の面では BTO に対し アドバンテージがあるものの、誘電損失が大き いというデメリットの面もある。この誘電損失 を改善できる Ca の添加方法等についても検討 していきたいと考えている。

最後に、先端研究施設共用イノベーション創 出事業の一環として、「フォトンファクトリーの 戦略的産業利用」のプログラムを通して、本課 題を実施することができ、誘電体材料の特性発 現に関わる基礎的な実験結果を得ることができ ました。この場をお借りいたしまして、感謝申 し上げます。

参考文献

T. Mitsui and W. B. Westpal, *Phys. Rev.*, 124, (1961) pp. 1354-59
 K. Asokan, J. C. Jan, J. W. Chiou, W. F. Pong, M-H. Tsai, H. L. Shih, H. Y. Chen, H. C. Hsueh, C. C. Chuang, Y. K. Chang, Y. Y. Chen and I. N. Lin, *J. Phys.: Condens Matter*, **13**, 2001, pp. 11087-95

[3] K. Asokan, J. C. Jan, J. W. Chiou, W. F. Pong,
[3] K. Asokan, J. C. Jan, J. W. Chiou, W. F. Pong,
M.-H. Tsai, Y. K. Chang, Y. Y. Chen, H. H. Hsieh, H.
-J. Lin, Y. W. Yang, L. J. Lai, and I. N. Lin, Journal
of Solid State Chemistry 177 (2004) 2639-2643
[4] T. Okajima and K. Yasukawa,: AIP Conf. Proc.
Volume 1092 (2009) pp. 75-78

[5] B. Ravel and M. Newville, *J.Synchrotron Rad.*, **12**, (2005), pp. 537-41

<u>成果発表状況</u>:

学会発表、論文投稿および特許出願について は未実施である。