

Measuring the Unitarity Triangle Angle α with BaBar

Adrian Bevan KEK, 15th September 2006

Overview

- Motivation
- PEP-II and the BaBar Detector
- CKM Matrix.
- Measuring α through understanding penguins.
- Ingredients of a time dependent analysis
- Results
 - $B \rightarrow \pi \pi$, ρρ, ρπ. New For Summer V6
 - combination of results
 - Prospects from $u\bar{u}d$ transitions with a_1 mesons.
- Summary

Motivation

"Why is our universe matter dominated?"

PEP-II

- Asymmetric energy e⁺e⁻ collider
- Study decay of B meson pairs.

- Record data at the Y(4S) ~90% of the time.
- Run below the bb production threshold for background studies.

9 GeV $e^- \times 3.1$ GeV e^+ Y(45) boost: $\beta \gamma = 0.55$ Head - on collisions

PEP-II performance

- The accelerator is performing well:
 - Maximum Luminosity of 1.207 10³⁴ cm²s⁻¹
 - I_{HER}= 1900 mA
 - I_{LER} = 2900 mA
- Reached over 4 times the design luminosity.
- Current PEP-II status:
 - Scheduled summer shutdown. Data taking will resume in January '07.

BaBar detector

 Upgrading muon system to replace all remaining RPCs with LSTs for run 6.

BaBar integrated luminosity

- Recorded 390/fb (~410 million B pairs).
- Expect ~1000/fb by summer 2008.
- DOE funding is approved until summer 2008.
- 114 contributed papers to ICHEP '06.
- 242 papers submitted to either PRL or PRD as of 12th September '06.

The BaBar Collaboration

15th September 2006

CP violation in meson decay

 Manifest in couplings between quark generations:

• The couplings V_{ij} form the 3×3 CKM Matrix. Wolfenstein Parameterisation:

$$V = \begin{pmatrix} 1 - \lambda^2 / 2 & \lambda & A\lambda^3 (\rho - i\eta) \\ -\lambda & 1 - \lambda^2 / 2 & A\lambda^2 \\ A\lambda^3 (1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4) \begin{pmatrix} \lambda \sim 0.22 \\ A \sim 0.8 \\ \rho \sim 0.2 - 0.27 \\ \eta \sim 0.28 - 0.37 \end{pmatrix}$$

Understanding Standard Model CP Violation means accurate measurements of ρ and η

Relative magnitudes d s b

Studying CP violation in B decay

• Study decays involving b \rightarrow u and b \rightarrow t transitions to probe the weak phase of V_{ub} and V_{td}. (V_{ud} V

- B-factories have measured β to ~1° in ccs, and starting to do precision measurements in charmless b→s penguin decays.
- Now starting to constrain α and γ .

CP violation effects

CP violation is manifest through interference.

 $\Pr(B^0 \to f) \neq \Pr(\overline{B}^0 \to \overline{f}) \xrightarrow{P}_{B^0}$

Direct CP violation

- 'just' number counting like ε '/ ε : e.g. A_{CP} in $B \rightarrow K\pi$.

- CP violation in interference of mixing and decay $(Im\lambda \neq 0)$.
 - Time-dependent effect.
 - Need asymmetric e⁺ and e⁻ beam energies study in detectors.

Observables

• Analyse time evolution of $B^0\overline{B}^0$ system (assume $\Delta\Gamma=0$): $f_{+/-}(B^0/\overline{B}^0_{phys} \rightarrow f/\overline{f}, \Delta t) =$ $\frac{\Gamma}{4}e^{-\Gamma|\Delta t|} \left[1+\eta S\sin(\Delta m_d\Delta t)-\eta C\cos(\Delta m_d\Delta t)\right]$ $\eta = +1(-1) \text{ for } B^0(\overline{B}^0)$

$$S_{f_{CP}} = \frac{2 \operatorname{Im} \lambda_{f_{CP}}}{1 + |\lambda_{f_{CP}}|^2}$$
$$C_{f_{CP}} = \frac{1 - |\lambda_{f_{CP}}|^2}{1 + |\lambda_{f_{CP}}|^2}$$

$$C = -A_{CP}$$

BaBar : Belle

Observables

 Construct an asymmetry from the time distributions for f₊ and f₋.

CP violation in $B \rightarrow h^+h^-$, $h=\pi,\rho$

- Need to bound $|\alpha_{eff} \alpha|$ (shift from loops).
- Different |Penguin/Tree| for different decays.

Isospin analysis

SU(2) isospin symmetry
 relates u and d quarks: m_u ~ m_d

ππ: Gronau & London PRL65, 3381 (1990) etc. ρπ Snyder-Quinn: PRD48, 2139 (1993) etc. (ρρ 3 x ππ)

- Different B→ππ, ρπ and ρρ final states can be related to each other through isospin amplitudes.
- These amplitude relations can be used to constrain the penguin shift in the time dependent measurement:
 - Bounds α_{eff} - α .
 - Relations are triangles for $\pi\pi$ and $\rho\rho$, and pentagons for $\rho\pi$.

Isospin analysis

• There are SU(2) violating corrections to consider, for example electroweak penguins, but these are much smaller than current experimental accuracy and can be incorporated into the isospin analysis.

Ingredients of a time dependent analysis

- In order to measure S and C we need to be able to
 - Isolate the signal from large samples dominated by background.
 - Measure the proper time difference between the decay vertices of the two B mesons in the event [vertexing].
 - Determine the flavor of the other B meson in the event [tagging].

Isolating signal events

- Beam energy is known very well at an e⁺e⁻ collider like PEP-II / KEK-B
 - use an energy difference and effective mass to select events:

$$\Delta E = E_B - E_{beam}^* \qquad m_{ES} = \sqrt{(E_{beam}^*)^2 - P_B^2}$$

More background suppression

 Use the shape of an event to distinguish between Y(4S)→BB and e⁺e⁻ → qq

Vertexing

 Then fit the ∆t distribution to determine the amplitude of sine and cosine terms.

Flavor tagging

- Decay products of B_{TAG} are used to determine its flavor.
- At ∆t=0, the flavor of B_{REC} is opposite to that of other B_{TAG}.
- B_{REC} continues to mix until it decays.
- Different B_{TAG} final states have different *purities* and different *mistag probabilities*.

BaBar's flavor tagging algorithm splits events into mutually exclusive categories ranked by signal purity and mis-tag probability. These plots are for the 316fb⁻¹ h⁺h⁻ data sample.

15th September 2006

Search for a needle in a haystack

Study the decay of several channels to constrain α :

 $B \to \rho \pi$ $B \to a_1 \pi$ $B \to a_1 \rho$

 $B \rightarrow \pi \pi$

 $B \rightarrow \rho \rho$

 $B \rightarrow \pi^+ \pi^-$

Updated measurement using 347x10⁶ B pairs.

hep-ex/0607106

Evidence for CP Violation in $B \rightarrow \pi \pi$

hep-ex/0607106

• BaBar data shows evidence for CP violation at 3.6σ using the S and C measurement in $B \rightarrow \pi^+ \pi^-$.

 $S_{\pi\pi} = -0.53 \pm 0.14 \pm 0.02$ $C_{\pi\pi} = -0.16 \pm 0.11 \pm 0.03$

- (S,C)=(0,0) is excluded at a confidence level of 0.9997.
- Still a mild discrepancy with Belle's result ⇒ need more data to resolve this.

Updated sides of the $\pi\pi$ triangle

- Using 347x10⁶ B pairs.
- $\pi^0 \pi^0$ selection improved use $\gamma \rightarrow e^+e^-$ conversions, and 'merged' π^0 mesons.

15th September 2006

Adrian Bevan

hep-ex/0607106

A B⁰ $\rightarrow \pi^0 \pi^0$ candidate

15th September 2006

$B \rightarrow \pi \pi$ Isospin analysis

hep-ex/0607106

- The measurement of C⁰⁰ is starting to distinguish between possible solutions for $\delta \alpha$.
- Need more data before the dip starts to become significant.
- The precision of the ππ isospin analysis will be something to watch as the B-factories approach 1ab⁻¹.

Β→ρρ

- Use $B \rightarrow \rho \rho$ decays to measure α .
- Theory is slightly more complicated than ππ.
- Experimentally challenging.
- But loop contributions are better constrained than ππ.

$$J^{P} = 0^{-} : \pi^{-}$$

$$J^{P} = 1^{-} : \rho^{-}$$
Spin 0 \rightarrow Spin 1
narrow particle \rightarrow broad resonance

$$\frac{d^{3}\Gamma}{d\cos\theta_{l}d\cos\theta_{2}d\Phi} \propto \left|\sum_{m=-1,0,1} A_{m}Y_{1,m}(\theta_{1},\Phi)Y_{1,-m}(\theta_{2},\Phi)\right|^{2}$$

$$\propto \left\{\frac{1}{4}\sin^{2}\theta_{1}\sin^{2}\theta_{2}(|A_{+1}|^{2} + |A_{-1}|^{2}) + \cos^{2}\theta_{1}\cos^{2}\theta_{2} |A_{0}|^{2} + \frac{1}{2}\sin^{2}\theta_{1}\sin^{2}\theta_{2}[\cos 2\Phi\Re(A_{+1}A_{-1}^{*}) - \sin 2\Phi\Im(A_{+1}A_{0}^{*} - A_{-1}A_{0}^{*})]\right\}$$

$$f_L = \frac{|A_0|^2}{\sum_{m=-1,0,1} |A_m|^2}$$

Measuring α with B $\rightarrow \rho\rho$ decays

- $B \rightarrow VV$ decay;
 - Angular correlation has 11 observables (6 amplitudes, 5 phases)

π

0

B⁰

 θ_{2}

- need angular analysis to determine CP content.
- ρ⁺ρ⁻ is almost 100% π[°]
 longitudinally polarized
 - simplifies analysis a lot!
 - CP even helicity zero state dominates:

$$\frac{d^{2}\Gamma}{\Gamma d\cos\theta_{1}d\cos\theta_{2}} = \frac{9}{4} \begin{pmatrix} f_{L}\cos^{2}\theta_{1}\cos^{2}\theta_{2} + \frac{1}{4}(1-f_{L})\sin^{2}\theta_{1}\sin^{2}\theta_{2} \end{pmatrix}$$
Longitudinal
(CP even)
Transverse
(Mixed CP state) 29

θ

$$B^0 \rightarrow \rho^0 \rho^0$$

Updated measurement using 347x10⁶ B pairs.

- Leads to a weaker constraint on penguin pollution.

 $B^+ \rightarrow \rho^+ \rho^0$

Submitted to PRL hep-ex/0607092

- Updated measurement using 232x10⁶ B pairs.
- Simultaneous fit for $B^+ \rightarrow \rho^+ f_0(980)$.
- Smaller Branching Fraction measured.
 - Leads to a weaker constraint on penguin pollution. 390 ± 49 events

$$\mathcal{B} = (16.8 \pm 2.2 \pm 2.3) \times 10^{-6}$$

$$f_L = 0.905 \pm 0.042^{+0.023}_{-0.027}$$

$B^0 \rightarrow \rho^+ \rho^-$

hep-ex/0607098

- Updated for ICHEP '06.
- Using 347x10⁶ B pairs.
- Reduced systematic uncertainty by improving treatment of correlations.
- Use only the tagged events for all results.

	Category (c) ϵ_c		ω_c	$\Delta \omega_c$	
1	Lepton	0.080 ± 0.001	0.032 ± 0.004	0.002 ± 0.008	
- 1	Kaon 1	0.114 ± 0.001	0.053 ± 0.005	-0.012 ± 0.009	
	Kaon 2	0.176 ± 0.002	0.152 ± 0.005	-0.015 ± 0.008	
_)	Kaon-Pion	0.135 ± 0.002	0.233 ± 0.006	-0.018 ± 0.010	
- 1	Pion	0.137 ± 0.002	0.327 ± 0.007	0.059 ± 0.010	
્ય	Other	0.095 ± 0.001	0.412 ± 0.008	0.042 ± 0.001	
	Untagged	0.266 ± 0.002	0.500 ± 0.000	0.000 ± 0.000	

$B^0 \rightarrow \rho^+ \rho^-$

Conservative uncertainty on mis-reconstructed • signal fraction which can be reduced.

Table 4: Summary of additive systematic uncertainty contributions.

Contribution	$\sigma(N_{signal})$	$\sigma(f_L)$	$\sigma(S_{\rm long})$	$\sigma(C_{\rm long})$
PDF parameterisation	$^{+16.7}_{-30.2}$	$^{+0.0082}_{-0.0064}$	$^{+0.0149}_{-0.0425}$	+0.0300 -0.0306
SCF fraction	84.0	$+0.0007 \\ -0.0011$	+0.00235 -0.00355	+0.0070 -0.00683
m_{ES} and ΔE width	22.9	0.005	0.011	0.012
${\cal B}$ background normalisation	$^{+16.0}_{-17.2}$	$^{+0.0033}_{-0.0038}$	+0.0096 -0.0115	+0.0024 -0.0015
floating B backgrounds	33.6	0.004	0.033	0.006
CPV in B background	$^{+3.3}_{-2.0}$	$+0.0006 \\ -0.0016$	+0.0059 -0.0214	+0.0118 -0.0115
au	$^{+0.1}_{-0.4}$	$+0.0000 \\ -0.0002$	+0.0002 -0.0008	0.0007
Δm	$^{+0.0}_{-0.2}$	$^{+0.0000}_{-0.0002}$	+0.0014 -0.0020	$+0.0018 \\ -0.0012$
tagging and dilution	$^{+2.6}_{-8.1}$	$^{+0.0029}_{-0.0021}$	+0.0016 -0.0053	+0.0068 -0.0054
transverse polarisation ${\cal CPV}$	$^{+0.0}_{-8.3}$	+0.0057 -0.0000	+0.0125 -0.0152	$+0.0095 \\ -0.0110$
WT SCF CPV	$^{+0.2}_{-1.1}$	$^{+0.0000}_{-0.0003}$	+0.0051 -0.0065	$+0.0116 \\ -0.0113$
DCSD decays	_	_	0.012	0.037
Interference	14.8	0.0036	0.023	0.022
Fit Bias	28	0.007	0.002	0.022
SVT Alignment	_	_	0.0100	0.0055
Total	$^{+97}_{-101}$	$^{+0.015}_{-0.013}$	$^{+0.05}_{-0.07}$	± 0.06

- Improvements in modelling correlations and backgrounds result in a reduced systematic uncertainty on S and C.
- Improved upper limit for B→a₁ρ also helps to reduce systematic uncertainty.

$$\mathcal{B}(B^{0} \to \rho^{+} \rho^{-}) = (23.5 \pm 2.2(\text{stat}) \pm 4.1(\text{syst})) \times 10^{-6},$$

$$f_{L} = 0.977 \pm 0.024(\text{stat})^{+0.015}_{-0.013}(\text{syst}),$$

$$S_{\text{long}} = -0.19 \pm 0.21(\text{stat})^{+0.05}_{-0.07}(\text{syst}),$$

$$C_{\text{long}} = -0.07 \pm 0.15(\text{stat}) \pm 0.06(\text{syst}).$$

15th September 2006

Updated α from B $\rightarrow \rho\rho$ decays

- Penguin pollution is constrained to be <18° (68% CL).
- Evidence for $\rho^0 \rho^0$ and a • lower branching fraction for $\rho^+\rho^0$ result in a weakened constraint on α.

15th September 2006

Can use a different approach

• Relate the penguin contribution in $\rho^+\rho^-$ to $K^{*0}\rho^+$ using SU(3) symmetry:

$$C_{\text{long}} = \frac{2r\sin\delta\sin(\beta+\alpha)}{1-2r\cos\delta\cos(\beta+\alpha)+r^2},$$

$$S_{\text{long}} = \frac{\sin 2\alpha + 2r\cos\delta\sin(\beta-\alpha) - r^2\sin 2\beta}{1-2r\cos\delta\cos(\beta+\alpha)+r^2},$$

$$R = \left(\frac{|V_{cd}|f_{\rho}}{|V_{cs}|f_{K^*}}\right)^2 \cdot \frac{\Gamma_{L,CP-averaged}(B^{\pm} \to K^{*0}\rho^+)}{\Gamma_{L,CP-averaged}(B^0 \to \rho^+\rho^-)},$$

$$= \frac{Fr^2}{1-2r\cos\delta\cos(\beta+\alpha)+r^2}.$$

r=|P/T|

- $\delta\text{=}\text{strong}$ phase difference between P and T
- F=Correction for SU(3) breaking effects not included in the decay constants

• It turns out that the error on α and δ don't depend strongly on F and σ (F).

Constraints using the Beneke et al. model

- Several solutions in 0-180°
- For the standard model solution of α, these two are overlapping

15th September 2006

$B \rightarrow \rho \pi$

Snyder-Quinn method: PRD 48 2139 (1993)

- Extract α and strong phases using interference between amplitudes in the $\pi^+\pi^-\pi^0$ Dalitz plot.
- Amplitude $A_{3\pi}$ dominated by $\rho^+\pi^-$, $\rho^-\pi^+$, $\rho^0\pi^0$ and radial excitations

 The differential decay rate across the Dalitz plot is given by

$$d\Gamma(B^0 \to \pi^+ \pi^- \pi^0) = \frac{1}{(2\pi)^3} \frac{|A_{3\pi}|^2}{8m_{B^0}^3} ds_+ ds_-$$

• where

- $\begin{array}{rcl} A_{3\pi} & = & f_{+}A^{+} + f_{-}A^{-} + f_{0}A^{0} \\ \overline{\mathcal{A}}_{3\pi} & = & f_{+}\overline{A}^{+} + f_{-}\overline{A}^{-} + f_{0}\overline{A}^{0} \end{array}$
- A^κ and f^κ are the amplitudes and kinematic functions of the Dalitz variables for a ρ meson of charge κ.

15th September 2006

Fitting the time dependence

- Fit 26 coefficients of the time dependence of $B \rightarrow \pi^+ \pi^- \pi^0$ **decays** $|\mathcal{A}_{3\pi}^{\pm}(\Delta t)|^2 = \frac{e^{-|\Delta t|/\tau_{B^0}}}{4\tau_{D^0}} \Big[|\mathcal{A}_{3\pi}|^2 + |\overline{\mathcal{A}}_{3\pi}|^2 \mp \Big(|\mathcal{A}_{3\pi}|^2 - |\overline{\mathcal{A}}_{3\pi}|^2 \Big) \cos(\Delta m_d \Delta t) \Big]$ $\pm 2 \mathrm{Im} \left[\overline{\mathcal{A}}_{3\pi} \mathcal{A}_{3\pi}^* \right] \sin(\Delta m_d \Delta t) \right] ,$
- Where the amplitudes are written in terms of U and I.

$$|A_{3\pi}|^{2} \pm \left|\overline{A}_{3\pi}\right|^{2} = \sum_{\kappa \in \{+,0,-\}} |f_{\kappa}|^{2} U_{\kappa}^{\pm} + 2 \sum_{\sigma < \kappa \in \{+,0,-\}} \left(\operatorname{Re}\left[f_{\kappa}f_{\sigma}^{*}\right]U_{\kappa}^{\pm} - \operatorname{Im}\left[f_{\kappa}f_{\sigma}^{*}\right]U_{\kappa\sigma}^{\pm}\right) + \operatorname{Im}\left[f_{\kappa}f_{\sigma}^{*}\right]U_{\kappa\sigma}^{\pm}\right)$$
$$\operatorname{Im}\left(\overline{A}_{3\pi}A_{3\pi}^{*}\right) = \sum_{\kappa \in \{+,0,-\}} |f_{\kappa}|^{2} I_{\kappa} + \sum_{\sigma < \kappa \in \{+,0,-\}} \left(\operatorname{Re}\left[f_{\kappa}f_{\sigma}^{*}\right]I_{\kappa\sigma}^{\mathrm{Im}} + \operatorname{Im}\left[f_{\kappa}f_{\sigma}^{*}\right]I_{\kappa\sigma}^{\mathrm{Re}}\right)$$

The information on α and CP violation is hidden in these variables:

$$C = \frac{1}{2} \left(\frac{U_{+}^{-}}{U_{+}^{+}} + \frac{U_{-}^{-}}{U_{-}^{+}} \right) \qquad S = \frac{I_{+}}{U_{+}^{+}} + \frac{I_{-}}{U_{-}^{+}}$$
$$\Delta C = \frac{1}{2} \left(\frac{U_{+}^{-}}{U_{+}^{+}} - \frac{U_{-}^{-}}{U_{-}^{+}} \right) \qquad \Delta S = \frac{I_{+}}{U_{+}^{+}} - \frac{I_{-}}{U_{-}^{+}}$$
$$\Delta S \text{ and } \Delta C \text{ are not CP observation}$$

nd ΔC are not CP observables

$$B \rightarrow \rho \pi$$

hep-ex/0608002

Updated result using 347x10⁶ B pairs

Results

 Convert the 27 fitted coefficients into observables used in the Q2B analysis (where one analyses the narrow ρ bands in the Dalitz plot)

•

Constraint on $\boldsymbol{\alpha}$

 An alternative would be to use SU(3) to obtain a model dependent result with better precision and 15° theory uncertainty [see M. Gronau and J. Zupan PRD70 (2004) 074031].

Combination of results

- Two statistical methods:
 - UT Fit: http://www.utfit.org
 - CKM Fitter: <u>http://www.slac.stanford.edu/xorg/ckmfitter/ckm_welcome.html</u>

Combination of results

- The constraint on α obtained is dependent on the statistical treatment used.
- This is a reflection of the fact that we need more data to perform a precision measurement of α.
- Excluded regions are common to both methods.

This constraint does not include the latest result from Belle's $\rho\pi$ analysis

Finding the apex of the triangle...

This constraint does not include the latest result from Belle's $\rho\pi$ analysis

$B \rightarrow a_1 \pi$ something for the future?

PRL 97 (2006) 051802

- Not a CP eigenstate like $B \rightarrow \rho \pi$.
- First observation of this channel (9.2σ).
- First step towards extracting α.

 $\mathcal{B}(B^0 \to a_1^{\pm}(1260)\pi^{\mp}) = (33.2 \pm 3.8 \pm 3.0) \times 10^{-6}$

 To complete the puzzle we need a time dependent analysis, and to study related decays [K₁π etc. see Gronau and Zupan PRD 73 (2006) 057502].

 $B \rightarrow a_1 \rho$

- Motivation analogous to $\rho\rho$ and $a_1\pi$ (this is an AV final state).
- Also a background to other charmless decays
- Using a data sample of 110x10⁶ B pairs:

$$BR(B^{0} \to a_{1}^{\pm} \rho^{\mp})$$

< 61×10⁻⁶ (90% CL)

- Little prospect to measure α with this decay channel.
- Improved upon the previous upper limit
 by more than a factor of 50.

Conclusions

- Evidence for CP violation in $B \rightarrow \pi^+ \pi^-$.
- Updated measurements of the inputs to the $\rho\rho$ isospin analysis weaken the constraint on α from $\rho\rho$.
- 1-2 σ constraint on α from $\pi^+\pi^-\pi^0$ Dalitz analysis
 - very useful when combining the result with other measurements.
- SU(3) approach is more precise than isospin analysis for both of these.
- $a_1\pi$ may be able to provide an additional check
- Null result from search for $a_1\rho$ not encouraging.
- Combining $\pi\pi$, $\rho\pi$ and $\rho\rho$ gives a measurement of α with precision ~10°.

Additional Material

sPlots

• Technique for visually representing fit species in a maximum likelihood fit.

• An sPlot for a variable is made without using that variable in the likelihood.

Flavor Tagging

Amplitude of oscillation decreases for a given S and C as the mistag probability ω_c increases.

The effective tagging efficiency decreases with increasing ω_c $Q = \varepsilon_c (1 - 2\omega_c)^2$

15th September 2006

Asymmetry

Asymmetry

Asymmetry