Soft-Collinear Factorization

& The Theory of $B \rightarrow X_s \gamma$ Decay

Matthias Neubert – Cornell & IAS Princeton

October 18, 2004

Seminar @ KEK

Outline

- Introduction
- Concepts and applications of soft-collinear effective theory (SCET)
- 𝔅 Factorization in *B*→*X*_sγ decay
- 👌 Outlook

Based on: hep-ph/0402094 (with S.Bosch, B.Lange, G.Paz) & hep-ph/0408179

Introduction

- Heavy-quark expansions have become main theoretical tool to explore properties and decay processes of heavy (b) hadrons
 - Many applications to beauty & charm spectroscopy, exclusive $b \rightarrow c/\nu$ decays ($|V_{cb}|$), inclusive decays
- B-factory era (2000's)
 - Focus on $B \rightarrow$ light processes:
 - $|V_{ub}|$ determinations (UT sides)
 - Rare decays (UT angles)
 - Searches for New Physics
 - Processes at large recoil (fast light particles)

Challenge

Construct heavy-quark expansions for processes involving both soft and energetic light partons

- Soft: $p_{soft} \sim \Lambda_{QCD} << m_b$
- Collinear: $p_{col}^2 << E_{col}^2$
 - => $p_{soft} \notin p_{col}$: semi-hard scale

Soft-Collinear Effective Theory

[Bauer, Pirjol, Stewart & Fleming, Luke]

Define light-like vectors:

$$n^{\mu} = (1, 0, 0, 1), \quad ar{n}^{\mu} = (1, 0, 0, -1), \qquad n^2 = ar{n}^2 = 0$$

Expand 4-vectors:

$$p^{\mu} = (n \cdot p) \frac{\bar{n}^{\mu}}{2} + (\bar{n} \cdot p) \frac{n^{\mu}}{2} + p^{\mu}_{\perp} \equiv p^{\mu}_{+} + p^{\mu}_{-} + p^{\mu}_{\perp}$$

b Scaling of collinear momenta:

$$\bar{n} \cdot p \gg n \cdot p$$
, $\frac{n \cdot p}{\bar{n} \cdot p} \sim \lambda$ (or λ^2)

Soft-Collinear Effective Theory

b Systematic power counting in $\lambda = \Lambda_{QCD} / E$

- Momenta, coordinates, fields, operators
- Effective Lagrangians for strong and weak interactions (currents, 4-quark operators), expanded in powers of λ, e.g.:

Symmetries (gauge and reparameterization invariance)

Soft-Collinear Effective Theory

- Wuch more complicated than previous heavy-quark expansions
 - Many degrees of freedom (hard-collinear, collinear, soft, softcollinear messengers)
 - Appearance of Wilson lines
 - Expansion in non-local string operators integrated over lightlike field separation
 - Light-cone physics (not accessible to lattice QCD)

Different Versions of SCET

Depending on kinematic situation, one distinguishes:

- SCET-1: hard-collinear & soft [Bauer, Pirjol, Stewart; Beneke, Feldmann et al.;
 - e.g.: form-factor relations, inclusive $B \rightarrow X_s \gamma$ and $B \rightarrow X_u / \nu$ decays, jet physics, threshold production of unstable particles
- SCET-2: collinear & soft & soft-collinear messengers [Becher, Hill, MN]
 - e.g.: exclusive $B \rightarrow \pi \pi$, $B \rightarrow K^* \gamma$ decays, $B \rightarrow$ light form factors
- Often 2-step matching: $QCD \rightarrow SCET-1 \rightarrow SCET-2$ or: $QCD \rightarrow SCET-1 \rightarrow HQET$

Sample Applications

Have entered an era in which many new results are being derived using SCET

- Examples SCET-1:
 - Jet physics: enhanced power corrections to event shapes in $e^+e^- \rightarrow$ hadrons (α_s determination) [Bauer, Lee, Manohar, Wise 03]
 - Effective field theory for unstable particles [Beneke, Chapovsky, Signer,
 - Inclusive *B* decays: first complete NLO predictions (RG-improved) for $B \rightarrow X_u / v$ spectra in shape-function region (precision determination of $|V_{ub}|$) [Bauer, Manohar 03; Bosch, Lange, MN, Paz 04]
 - RG-improved predictions for $B \rightarrow X_s \gamma$ [this talk]

Sample Applications

- Examples SCET-2:
 - QCD factorization proof and complete next-to-leading order Sudakov resummation for $B \rightarrow \gamma I \nu$ [Lunghi, Pirjol, Wyler 02; Bosch, Hill, Lange, MN 03]
 - Symmetry relations for color-suppressed $B \rightarrow D^0 \pi^0$ decays [Mantry, Pirjol, Stewart 03]
 - QCD factorization proof for $B \rightarrow K^* \gamma$ (parts for $B \rightarrow \pi \pi$)

[Becher, Hill, MN, Pecjak 03; Bauer, Pirjol, Stewart 04]

Complete Sudakov resummation for $B \rightarrow$ light form factors [Lange, MN 03; Becher, Hill, Lee, MN 04]

̇ is Relevance to*B*-factory program (γ from*B*→ππ, π*K*,ρπ, New Physics in*B*→ΦK_s and πK_s "anomalies", etc.)

Factorization in Inclusive B Decays

Universal QCD factorization formula:

11

Importance of $B \rightarrow X_s \gamma$

Prototype of all FCNC processes, with potentially large sensitivity to New Physics effects

Crucial to have reliable prediction of inclusive rate in Standard Model and its extensions

Present Status

- Total rate known at NLO in RG-improved perturbation theory (claimed accuracy: $\delta\Gamma/\Gamma$ =10%)
- Heroic effort under way to compute the next order, requiring:
 - 3- and 4-loop anomalous dimensions
 - 2- and 3-loop matrix elements in the electroweak theory
 - One of most ambitious calculations in high-energy physics
- However, it is impossible to measure the total rate!

The Problem

Experimental cutoff on photon energy:

- CLEO: *E_y*>2.0 GeV

1850801-007

The Problem

 \ge Introduces sensitivity to scales below m_b , e.g.:

$$\Gamma \sim m_b^5 \left[1 - \frac{\alpha_s}{3\pi} \left(2 \ln^2 \frac{\Delta}{m_b} + 7 \ln \frac{\Delta}{m_b} + \dots \right) \right]; \quad \Delta = m_b - 2E_{\text{cut}}$$
Relevant scales: Pole mass?

– Hard: m_b

₩.

– Hard-collinear: $\sqrt{m_b \Delta}$ ~ hadronic invariant mass of X_s

- Soft: $\Delta = m_b - 2E_{cut}$

Wust disentangle physics at soft scale (nonperturbative) !

Main reason for RG analysis (not resummation of logs)

Scale Separation using EFT

Two-stage matching of effective field theories: - QCD \rightarrow SCET-1 \rightarrow HQET

Shape Function

b Definition:

$$S(\hat{\omega}) = \int \frac{dt}{2\pi} e^{i\omega t} \frac{\langle \bar{B}(v) | \bar{h}(0) [0, tn] h(tn) | \bar{B}(v) \rangle}{2M_B}$$
$$= \frac{\langle \bar{B}(v) | \bar{h} \delta(\omega - in \cdot D) h | \bar{B}(v) \rangle}{2M_B}$$

Where $\widehat{\omega} = \overline{\Lambda} - \omega$, and ω corresponds to the residual momentum of the heavy quark inside the *B* meson *[MN 93; Bigi, Shifman, Uraltsev, Vainshtein 94]*

 \rightarrow determines hard function *H*

RG Evolution

- ➢ Perturbative expansion of hard function is well behaved at scale $\mu_h \sim m_b$
- ➢ Perturbative expansion of jet function is well behaved at scale $\mu_i \sim m_b \Lambda_{\text{QCD}}$
- Vertication is associated with a hadronic scale $\mu_0 \sim \Lambda_{QCD}$
- Resum large logarithms (Sudakov double logarithms) using RG equations

Multi-Step Procedure

Master formula for the rate:

 $S(\mu_i)$: input

 $\Gamma \sim H(\mu_h) * U(\mu_h, \mu_i) * J(\mu_i) * U(\mu_i, \mu_0) * S(\mu_0)$

 $QCD \rightarrow SCET \rightarrow (RG \text{ evolution}) \rightarrow HQET \rightarrow (RG \text{ evolution})$

Evolution Equations

WRGE for hard functions:

$$\frac{d}{d\ln\mu}H(\mu) = 2\gamma_J(m_b,\mu)H(\mu)$$

Anomalous dimension:

Cusp anomalous dimension

$$\gamma_J(m_b,\mu) = -\Gamma_{\mathsf{cusp}}(\alpha_s) \ln \frac{\mu}{m_b} + \gamma'(\alpha_s)$$

- Can be solved using "standard" techniques (requires 3loop anomalous dimension at NLO!)
 - One loop more than usual due to extra logarithm

Evolution Equations

WRGE for shape function (integro-differential equation):

$$\frac{d}{d\ln\mu}S(\hat{\omega},\mu) = -\int d\hat{\omega}' \gamma_S(\hat{\omega},\hat{\omega}',\mu) S(\hat{\omega}',\mu)$$

Exact solution: [Lange, MN 03; see also Mannel et al. 98]

$$S(\widehat{\omega},\mu) = e^{V_S(\mu,\mu_0)} \frac{e^{-\eta\gamma_E}}{\Gamma(\eta)} \int_0^{\widehat{\omega}} d\widehat{\omega}' \frac{S(\widehat{\omega}',\mu_0)}{\mu_0^{\eta} (\widehat{\omega} - \widehat{\omega}')^{1-\eta}}$$

where:

$$\eta = \eta(\mu, \mu_0) = 2 \int_{\alpha_s(\mu_0)}^{\alpha_s(\mu)} \frac{d\alpha}{\beta(\alpha)} \Gamma_{\text{cusp}}(\alpha)$$

23

Shape Function Plots

Evolution effects:

$B \rightarrow X_s \gamma$ Branching Ratio

→ Branching ratio for $E_{\gamma} < E_{cut}$ in units of 10⁻⁴, for different shape-function models (variation of m_b and μ_{π}^2):

Folklore

- Spectral shape at large E_Y (2.1-2.6 GeV) very sensitive to hadronic physics (shape function)
 [Kagan, MN 98]
- ➢ Once cutoff is below 2 GeV, rate can be calculated using conventional heavy-quark expansion in $\alpha_s(m_b)$ and $\Lambda_{\rm QCD}/m_b$
 - Assumes relevance of only 2 physical scales: m_b and Λ_{QCD}
 - Variation $m_b/2 < \mu < 2m_b$ yields small scale dependence

But this is wrong!

Scale separation needed, since α_s(m_b) ≈ 0.2 and α_s(Δ) ≈ 0.5 are rather different, and power corrections in Λ_{QCD}/Δ can be larger than those in Δ/m_b
 Requires sophisticated *multi-scale OPE*

Scale Separation using SCET

Waster formula for the rate:

$$\Gamma \sim H(\mu_h) * U(\mu_h,\mu_i) * J(\mu_i) * U(\mu_i,\mu_0) * M(\mu_0)$$

$$QCD \rightarrow SCET \rightarrow (RG \text{ evolution}) \rightarrow HQET \rightarrow (RG \text{ evolution}) \rightarrow \text{local OPE}$$

OPE for Shape-Function Integrals

Short-distance expansion of arbitrary shape-function integrals defined with a hard UV cutoff Λ_{UV} :

Well-controlled connection with HQET parameters

[[]Bosch, Lange, MN, Paz hep-ph/0402094]

Resummed Expression (Leading term)

k Result after RG improvement at NNLO:

$$\begin{split} F_{E}(\Delta) &= 1 + \frac{\alpha_{s}(m_{b})}{3\pi} \left(-2\ln^{2}\frac{\Delta}{m_{b}} - 7\ln\frac{\Delta}{m_{b}} \right) \\ &\rightarrow \frac{e^{-\eta\gamma_{E}}}{\Gamma(1+\eta)} \exp[2S(\mu_{h},\mu_{i}) + 2S(\mu_{0},\mu_{i}) - 2a_{\gamma'}(\mu_{h},\mu_{i}) + 2a_{\gamma}(\mu_{0},\mu_{i})] \left(\frac{m_{b}}{\mu_{h}}\right)^{-2a_{\Gamma}(\mu_{h},\mu_{i})} \left(\frac{\Delta}{\mu_{0}}\right)^{\eta} \\ &\times \left\{ 1 + \frac{\alpha_{s}(\mu_{h})}{3\pi} \left[-4\ln^{2}\frac{m_{b}}{\mu_{h}} + 10\ln\frac{m_{b}}{\mu_{h}} + \frac{7\pi^{2}}{6} - 7 \right] \right. \\ &+ \frac{\alpha_{s}(\mu_{i})}{3\pi} \left[2\ln^{2}\frac{m_{b}\Delta}{\mu_{i}^{2}} - [4H(\eta) + 3] \ln\frac{m_{b}\Delta}{\mu_{i}^{2}} + 3H(\eta) + 2H^{2}(\eta) - 2\psi'(1+\eta) + 7 - \frac{2\pi^{2}}{3} \right] \\ &+ \frac{\alpha_{s}(\mu_{0})}{3\pi} \left[-4\ln^{2}\frac{\Delta}{\mu_{0}} + 4[2H(\eta) - 1] \ln\frac{\Delta}{\mu_{0}} + 4H(\eta) - 4H^{2}(\eta) + 4\psi'(1+\eta) - \frac{5\pi^{2}}{6} \right] \right\} \end{split}$$

where: $\Delta = m_b - 2E_{cut}$, and $\mu_h \sim m_b$, $\mu_i \checkmark m_b \Delta$, $\mu_0 \sim \Delta$

Leading Power Corrections

Small effect of λ_1/Δ^2 corrections:

Y

Figure 2: Size of the enhanced power correction proportial to λ_1/Δ^2 in (25) relative to the leading term, as a function of $\Delta = m_b - 2E_0$.

\ge In many respects, similarity with R_{τ} ratio

Numerical Results

➢ Estimate perturbative uncertainty by varying the 3 matching scales μ_h∼m_b, μ_i∼√m_b∆, μ₀∼∆ by ±50% about their central values

Also estimate parameter uncertainties

→ The dominant uncertainty!

Branching Ratio

Detailed error analysis:

Table 2: $B \to X_s \gamma$ branching ratio (in units of 10^{-4}) with estimates of perturbative uncertainties obtained by variation of the matching scales, for three variants of the shape-function scheme. See text for explanation.

E_0	Scheme	Br $[10^{-4}]$	μ_h	μ_i	μ_0	Sum	Power Cors.	Combined
$1.8\mathrm{GeV}$	RS 1	3.44	$^{\mathrm{+0.03}}_{\mathrm{-0.00}}$	$^{\mathrm +0.28}_{\mathrm -0.40}$	$^{+0.51}_{-0.02}$	$^{\mathrm +0.58}_{\mathrm -0.40}$	$^{+0.12}_{-0.07}$	± 0.53
	RS 2	3.44	$^{\mathrm +0.03}_{\mathrm -0.00}$	$^{\mathrm +0.28}_{\mathrm -0.40}$	$^{+0.14}_{-\ 0.15}$	$^{+0.31}_{-0.42}$	$^{+0.12}_{-0.07}$	± 0.53
	RS 3	3.42	$\substack{+0.03\\-0.00}$	$^{\mathrm +0.28}_{\mathrm -0.40}$	$^{\mathrm +0.17}_{\mathrm -0.15}$	$^{\mathrm +0.33}_{\mathrm -0.42}$	$^{+0.12}_{-0.07}$	± 0.53
$1.6{ m GeV}$	RS 1	3.51	$\substack{+0.03\\-0.00}$	$^{+0.31}_{-0.41}$	$^{\rm +0.17}_{\rm -0.01}$	$^{+0.35}_{-0.41}$	$^{+0.10}_{-0.05}$	± 0.55
	RS 2	3.52	$^{\mathrm +0.03}_{\mathrm -0.00}$	$^{\mathrm +0.31}_{\mathrm -0.41}$	$^{+0.13}_{-\ 0.09}$	$^{\mathrm +0.33}_{\mathrm -0.42}$	$^{+0.10}_{-0.05}$	± 0.55
	RS 3	3.52	$^{\mathrm{+0.03}}_{\mathrm{-0.00}}$	$\substack{+0.31\\-0.41}$	$^{\mathrm{+0.17}}_{\mathrm{-0.11}}$	$^{+0.35}_{-0.42}$	$^{+0.10}_{-0.05}$	± 0.55

Scale uncertainty much larger than ±3% (usually assigned)

Branching Ratio

Parameter uncertainties:

Table 3: $B \to X_s \gamma$ branching ratio (in units of 10^{-4}) with estimates of theoretical uncertainties due to input parameter variations as listed in Table 1. The upper (lower) sign refers to increasing (decreasing) a given input parameter.

Default	$m_b(\mu_*,\mu_*)$	$\overline{m}_b(\overline{m}_b)$	m_c/m_b	m_t	$ V_{ts}^*V_{tb} $	$ au_B$	$\alpha_s(M_Z)$	Combined
3.44	± 0.15	± 0.18	$^{-0.19}_{+0.10}$	± 0.04	$^{+0.24}_{-\ 0.10}$	± 0.03	± 0.08	$^{\mathrm +0.36}_{\mathrm -0.33}$
3.52	± 0.13	± 0.18	$^{-0.20}_{+0.10}$	± 0.04	$^{+0.25}_{-\ 0.10}$	± 0.04	± 0.10	$^{+0.37}_{-0.33}$

(correlation between m_b and $|V_{ts} * V_{tb}|$ not yet included)

Branching Ratio

Combined theory result:

 $\left| \text{Br}(B \to X_s \gamma) \right|_{E_0 = 1.8 \,\text{GeV}} = (3.44 \pm 0.53 \,\text{[pert.]} \pm 0.35 \,\text{[pars.]}) \times 10^{-4}$

Significant perturbative uncertainty from sensitivity to low scales!

Experiment (Belle 2004):

$$\left| \text{Br}(B \to X_s \gamma) \right|_{E_{\gamma} > 1.8 \,\text{GeV}} = (3.38 \pm 0.30 \pm 0.29) \cdot 10^{-4}$$

Implications for New Physics

- Larger theory error, and better agreement between theory and experiment, weaken constraints on parameter space of New Physics models!
- E.g., type-II two-Higgs doublet model:
 - m(H+) > 200 GeV (95% CL)

compared with previous bound of 500 GeV [Gambino, Misiak]

Shopping List

Weeded for a 5-10% calculation of the rate:

- 2-loop corrections (at least $\beta_0 \alpha_s^2$ terms) for matching coefficients at the scales μ_h , μ_i , and μ_0
- "Contour-improved perturbation theory" at low scale μ_0 ?
- Leading-order RG analysis (operator mixing) for $\Lambda_{\rm QCD} / m_b$ power corrections (NNLO in SCET expansion)
- Straightforward, but tedious …"
- ★ A lot of work is required to get a truly precise prediction for the B→X_sγ Branching Ratio

Summary

- For past few years, focus of heavy-flavor theory has been on understanding interplay of soft and energetic light partons
- Soft-collinear effective theory and QCD factorization theorems provide field-theoretical language for systematic studies of Sudakov logarithms and powersuppressed corrections
- Long list of potential applications