On Choice of Cavities to Install at STF Phase-2 of KEK

KEK LC Project Office, April 7, 2008

1. Introduction

Since the technology decision in 2004, in the area of cavity development the KEK group has been pursuing two, distinct cavity shapes - TESLA-like and Low-loss, aka LL. However, as the KEK LC office announced in the beginning of JFY2007, we would like to sort out the development programs for SRF cavities with the start of JFY2008. This is so as to make a clearer prioritization of the efforts and an optimized resource allocation associated with them. The background for making such a decision, at this point, is two-fold:

- Difficulties exist in maintaining the budget and human resources to pursue the two programs on equal footing.
- The present plan for the STF Phase2 assumes that JFY2008 is spent on the design efforts of the cavity and cryomodule, JFY2009-10 on construction, test, installation, and JFY2010- on system operation. While this schedule might see some delays due to budget constraints and might be also paced by STF Phase-1, some of the main system specifications need to be frozen before long, and thus, the cavity shape to use at STF Phase2 needs to be determined when the budget plans are put in place for JFY2008.

In this meanwhile, GDE, in early 2008, has revised its mid-range plan in accordance with recent budget issues in Europe and North America. Rather than preparing the Engineering Design Report by mid-2010, as assumed in the past, the current GDE schedule envisages that:

- Technical Design Phase 1 (TDP1), toward mid-2010, would focus on a selected set of high-priority development programs and cost studies.
- Technical Design Phase 2 (TDP2), toward 2012, would complete the Technical Design of ILC in sufficient details that project approval from all involved governments can be sought.
- Detailed engineering design and industrialization of needed technologies would continue toward commencement of ILC construction.

As for the SCRF milestone, the present TDP plan aims to achieve the high-gradient cavity performance at 35MV/m with the production yield of 50% in TDP1 and 90% in TDP2. Design work of crymodules is another focus items in TDP1. The present plan states that by the end of 2009 the

design the normal ILC cryomodule, including optimization of thermal balance and cryogenics operation as well as beam dynamics (component orientation and alignment), is to be completed. This is to be followed in 2010 by operation of cryomodules in all three regions, and to have at least one cryomodule record an average gradient of 31.5MV/m, constructed with contributions from all three regions,. Then a critical task to carry out in TDP2 is to test an extended system which contains three cryomodules that are powered by a single RF power distribution source. This means construction and operation of one ILC RF unit and establishment of needed technologies. This work corresponds to STF Phase2 in case of KEK. The timescale for this TDP2 goal and STF Phase2 plans are consistent.

The completion time-scale of Technical Design, the year 2010, apparently calls for final selection of ILC cavities to be made near the end of TDP1. While the KEK selection of the cavities to install in STF Phase2 in 2008 is substantially ahead of it, such a timeline is appropriate in consideration of engineering lead time as well as from the standpoint of leading the technical decision making process by GDE. The STF Phase2 is an effort to push ahead construction of a unit prototype system of the ILC main linac.

In a large-scale, global project like ILC, an adequate balance has to be taken between enforcement of common design specifications and allowance for regional design variations. The former obviously brings in the benefits of technical simplicity and maintainability, while the latter brings in a healthy competition which is expected to lead to improved performance and reduced cost. The concept of "plug compatibility" is being introduced to facilitate both of these aspects. The "plug-compatibility" provides clear specifications for spatial, functional and other interface conditions for critical components, such as cavities. Regional groups are allowed to develop hardware components with their own kind of technical optimization in as much as they follow the compatibility specifications. The design of STF Phase2 is likely to precede what would be presented in the ILC Technical Design, and as a consequence, its details would differ. However, in as much as the "plug-compatibility" specifications are met, the STF Phase2 still should serve as a prototype ILC linac system. Similarly, the cavity shape may be revised, even at a much later stage, as long as relevant compatibility specifications are met.

We at KEK see three flavors of cavity shapes worth consideration:

- So-called, TESLA-short, which is a derivative of the original TESLA shape, and is the current GDE baseline,
- TESLA-like cavity newly proposed at KEK,
- Low-Loss type cavity shape.

The couplers, tuners and the Helium jacket are also subjects of selection, in terms of the design decision for STF Phase2, although they are somewhat separated from the choice of the cavity shape.

The KEK LC office has been holding several meetings with relevant members inf the KEK LC group to examine this issue since Summer, 2007. In the first step, both the TESLA-like cavity team and the LL cavity team were invited to present the rationale for their design schemes in comparison with other cavity designs, including the TESLA-short. In the second step, a series of Q/A sessions took place. They were done in the form of face-to-face meetings and in exchanges of written materials. The LC office attempted to digest and summarize the points given in these discussions, and proceeded with the analysis of the choice issue from various standpoints. The guidelines that the LC office kept in mind while making a decision are as follows:

- (1) STF Phase2 is expected to serve as a test facility for the linac accelerator system, not limited to that for the cavity systems. The cavities and their associated hardware are required to perform as flawlessly as possible, to allow smooth testing of the overall system. The requirement goes beyond that of the simple gradient reach.
- (2) STF Phase2 aims to spearhead the world effort toward valid implementation of the ILC main linac system and toward industrialization of relevant technologies. The cavity design, for KEK to focus there, should be consistent with the plug-compatibility guidelines as being developed at GDE, should satisfy the ILC specifications, and should be competitive with or hopefully superior to the TESLA-short both in terms of performance and cost.
- (3) To attain concurrence and acceptance by colleagues in the entire GDE, the analysis and presentations on the cases for the cavity shape to pursue have to be well organized and traceable in each of "theories", "calculations", "simulations" and "validation with experimental data". While recognizing the effort of relevant teams, the LC office has to keep eyes on how their outputs in these aspects fare.
- (4) To attain multiple goals of STF Phase2 in a timely fashion, it is highly desirable to minimize schedule delays of the construction due to problems with cavity design and fabrication, including debugging. While recognizing the inevitable technical ambiguities in this type of R&D, we also must recognize our responsibility in maximally preempting such issues with good planning and foresight. The LC office has to keep eyes on how the technical ambiguities are put under control by the two cavity teams so as to clear the milestones at STF Phase 2 within the timescale of 2-3 years.

2. Conclusions

Conclusions by the KEK LC office are as follows:

- (A) STF Phase 2 KEK adopts TESLA-like cavities.
- (B) TESLA-like cavities has to satisfy GDE's Plug-compatibility requirements. The relevant team members must contribute to the development of Plug-compatibility guidelines, and, once agreed, must design and build the cavity systems at STF Phase2 in ways to satisfy these Plug-compatibility requirements, including the design and implementation of couplers and tuners.
- (C) Development continues on the LL-cavities, as construction and testing of cavities, in the light of maintaining certain future possibilities. However, peripheral component development associated with the LL-cavities, such as the couplers and tuners, is halted.

Following are the reasons for choosing the TESLA-like cavity:

- On Lorentz detuning corrections: TESLA-like cavity sees a fair consistency between the calculations and experiments. Although the accelerating gradient that has been tried in this study is still low, an evaluation is under way to make a comparison with TESLA-short. LL-cavity saw a substantial progress during the measurement at STF0.5 in March, 2008. However, the cross examination between theoretical calculations and measurements remains at an early stage.
- On HOM damping: TESLA-like cavity has nearly completed the experimental evaluation, although the scope of the study is limited to those possible without using the beam. LL-cavity still has work to do in cross-examining the experiment and the calculation.
- On accelerating gradient: While progress has been made, world-wide, in circumventing the field emission issues, 9-cell cavities of both types at KEK have yet to see satisfactory gradient performance experimentally. The present situation does not allow us to base our choice decision on the gradient performance.
- On high-power couplers: Both coupler designs associated with TESLA-like and LL-cavities have demonstrated satisfactory performance in high-power RF operation. However, the one for LL-cavity has remaining concerns to resolve on its heat-load.
- On materials for the endplates: TESLA-like cavity has adopted Titanium, as established by the TESLA group. LL-cavity has adopted stainless steel and as a consequence a Nb-SUS transition has to be introduced. The long-term mechanical stability of this transition is yet to be experimentally established.

Details of relevant technical discussion are presented in the next section.

The assessment of the KEK LC office on the comparison between TESLA-like and TESLA-short cavities is as follows: The design of the TESLA-like cavity package aims to improve that of TESLA-short in the areas of mechanical sturdiness, simplified coupler structure, maintainability of tuners. They have a potential of being adopted as the ILC baseline for their design superiority in the future, although, at this point, these points are not yet widely established through experimental validation nor overall design optimization. It is the opinion of the LC office that the scheme of TESLA-like cavity highly merits further development, if it is guided to follow the Plug-compatibility requirements, in terms of positively contributing to the SRF technology development for ILC and of maintaining the momentum of present R&D efforts.

It has to be noted, however, the TELSA-like cavity scheme also still has numerous issues to resolve before implementing it at STF Phase2:

- Experimental validation of reduced Lorentz Detuning, as intended in the design, in comparison with TESLA-short.
- Experimental validation of HOM damping at the level similar to or better than TESLA-short.
- Experimental validation of high-gradient performance at the level similar to or better than TESLA-short.
- Argumentation of the superiority or validity of the input couplers with fixed coupling.
- Adoption of Plug-compatibility guidelines.
- Design of tuners that satisfy Plug-compatibility requirements.

The present design of TESLA-like cavity package, in certain aspects, is not compatible with the ILC baseline:

- Cavity shape
- Length and diameter of beam pipe
- Input coupler types

Furthermore, the relevant members of GDE have to reconcile the following issues:

- Flange and its sealing method
- Magnetic shield

As stated earlier, GDE is adopting the policy of facilitating development of better SRF components

under the framework and restriction of Plug-compatibility requirements. Therefore, just because a certain component does not conform to the Baseline, it does not immediately follow that such a component is unsuited for ILC. Some components, such as tuners, do not have an established baseline definition. Relevant members from KEK must actively participate in the GDE discussion in developing the Plug-compatibility definitions, many of which still remain as open issues as of this writing.

Development of LL-cavity has been originally motivated by the desire for a higher accelerating gradient. The accelerating gradient (31.5MV/m) of present ILC design, while not solidly established technically, is known to sit substantially below the cost minimum from the standpoint of cost optimization. A potential benefit exists in maintaining development of LL-cavity from the standpoint of pursuing higher gradient into the future. As of Snowmass 2005, it was discussed that LL-cavity might become the baseline for the ILC phase-2 which was then considered as the 1TeV upgrade. These considerations support continued development of the LL-cavity package, although resource constraints do not permit it. In that case, scope-limited development only on the 9-cell cavities would be still meaningful. The Plug-compatibility requirements are, again, important boundary conditions to follow. However, they are not expected to be major constraints.

With the policies above, the KEK LC office intends to rapidly develop the new group organization at KEK, activity schedule including STF Phase1, commissioning and operation of the EP facility, and the JFY2008 budget. We note the increased role of KEK in the area of ILC SRF development. We wish to make this decision as the starting point for our renewed efforts.

3. Technical Comparison

In this section we summarize the reports from the two cavity groups and comments from the LC Office. The points of comparison are grouped as follows.

- Lorentz detuning and its correction
- HOM damping
- Accelerating gradient
- Integration with cryomodules
- Input couplers
- Safety regulation issues

It is noted that technical discussion in this section should be considered as draft at the present stage, since some numerical numbers are still being updated and analysis of data from STF Phase 0.5 still in progress, However, we believe there will be no essential modification that would change the conclusions.

(at 31.5MV/m under	TESLA like cavity	I	LL cavity	
2K)				
questions	expectation	measurements	expectation	measurements
Margin of the load	Needed stroke is	Experiment was	The max piezo	Cold test was done
on piezo?	estimated to be	done on	stroke is 4µm at	on 2008.2-3. The
	1µm. The	2007.10-11. The	2K (160µm at	static frequency
	margin to take	static frequency	80K). The	change was ~750Hz
	will be	change with piezo	expected shrink	with the DC drive of
	determined with	was ~150Hz (at	under 31.5MV/m	0-1000V at 2K.This
	internal/external	2K, tension 400kg,	is 0.87µm, or	corresponds to $2\mu m$
	drift taken into	voltage range	adding the	stroke.
	account.	0-500V). This	correction at	
		corresponds to the	equator, 1.23µm.	
		stroke of 1.0 µm.	Accordingly the	
		Operation was	margin against	
		confirmed up to the	4µm is a factor	
		max voltage	3.2.	
		1000V, which		
		ensures max 2.0		

(1) Lorentz Detuning (LD) and its Correction

		um stroke but		
		hustorosis		
		non ronroducibility		
		non-reproducionity,		
		and friction are		
		seen.		
Required and	The required	No pulse data	The required	No life data
expected Piezo	piezo life is >	available. Life tests	piezo life is	available. Tests are
lifetime?	10 ¹⁰ pulses	are needed.	2.2×10^9 pulses,	needed.
			assuming 5Hz,	
			6000hrs/yr,	
			20yrs). If each	
			piezo is fired 5	
			shots per pulse,	
			this means	
			1.1×10^{10} shots.	
			Lifetime of 1.5 x	
			10 ¹⁰ shots is	
			needed if factor	
			of x1.5 is	
			allocated for	
			margin The	
			tuner designed	
			for lowered loads	
			on piezo	
		D	on piezo.	
Deformation of the	The required	Experiment in	Expected a cavity	Cold test done in
cavity and the	piezo stroke is	Oct-Nov.2007. The	shrinkage of	Feb-Mar.2008.
margin	1µm. The	measured detuning	3.45µm at	Observed detuning
	present system	at 18MV/m was	31.5MV/m in an	was 23 deg (153Hz)
	allows up to	150Hz (1000µs	early calculation,	in the flat-top (Slow
	2µm movement.	flat-top). The	but this number	tuner, no offset
	The margin is	extrapolation to	is now known to	18MV/m). Simple
	factor 2.	31.5MV/m gives	be wrong, since a	extrapolation to 31.5
		1.5µm. A	wrong density	MV/m is 469Hz.
		simulation study is	value (too small	The max correction
		underway for more	by factor 1/100)	reached this time was
		understanding of	was assumed. An	460Hz with piezo

rr			1	
		LD. The value of	updated	4-cycle sine-wave
		the margin is to be	calculation is still	voltage imposed.
		reported later after	missing.	(Can be more,
		studying the		because the
		measurement		measurement
		method and the		sensitivity was
		effects of the offset.		saturated at 460Hz.)
				The present max
				amplitude is limited
				by the capacity of the
				power supply. The
				margin is expected to
				increase by
				reinforcing the power
				supply.
Influence of the	Influence on the		Lorentz detuning	
cavity deformation	field flatness,		deformation is	
	HOM, etc. is		~1.3µm. No side	
	totally		effects are	
	negligible. (The		expected.	
	Deformation is		-	
	only microns.)			
Margin against the	The target	Experiment done in	Will answer later.	Cold test done in
LLRF phase	residual error is	Oct-Nov. 2007.		Feb-Mar.2008. The
tolerance (+/-50Hz)	100Hz (a margin	The phase error at		observed residual
	of factor 2 is	18.2MV/m was less		error after piezo
	included)	than 2 degrees		correction was within
		(25Hz), with the		2 deg (13Hz) at 17
		noise level taken		MV/m in the absence
		into account. A		of LLRF feedback.
		guess at 31.5MV/m		The contribution of
		e		
		is below 75Hz.		the noise (observed
		is below 75Hz.		the noise (observed microphonic of 6Hz)
		is below 75Hz.		the noise (observed microphonic of 6Hz) is thought to be large.
		is below 75Hz.		the noise (observed microphonic of 6Hz) is thought to be large. The

			ratio is unknown at
			31.5 MV/m. Simple
			extrapolation gives 7
			deg (46Hz).
			However, it will be
			below 46Hz, if
			microphonic is
			independent of Eacc.
Correction scheme	By applying an	By applying an	
	offset voltage	offset and	
	and a single shot	resonant	
	on piezo for each	excitation of	
	machine pulse.	piezo shots (1-2	
		shots) for each	
		machine pulse.	

Comments by the LC Office :

TESLA like Cavity :

The correction range is claimed to be larger than that of TESLA cavity by factor of 1.7 owing to the stiffer design of the endplates and the cavity body. The design principle, the method of estimation, and the logic of hardware design to realize them are considered to be reasonable. The measurements at 19MV/m at STF0.5 in November 2007 are not sufficient for determining the maximum correction range of this scheme. However, studies are under way on, the relation between the LD theory and measurements. The extrapolation to the STF2, where operation around 31MV/m-35MV/m is anticipated, is a future issue. Nonetheless, the technical uncertainty on the mechanical capability of the tuner is considered small. The reliability issues connected to the friction and hysteresis in long-term operation and the maintainability of the tuner system must be investigated.

LL Cavity :

The design is geared toward its usage in high field operation so that the piezo is placed at 80K and the detuning range covers up to 45MV/m. There is a sufficient margin when this cavity is operated at 31.5MV/m. Unfortunately, there was an error in the assumed parameters of the niobium material in the original estimation, and a correct evaluation has not yet completed. In addition, the evaluation of the correction scheme using the resonant excitation is not yet satisfactory. Thus, the comparison between the design intention and the measurement analysis of STF0.5 has some fundamental issues to resolve. The phase stability was confirmed to be in the range of 2 degrees at 18MV/m at STF0.5.

The reliability at 31.5MV/m and the possibility of pulse-wise stable correction are future issues.

(2) HOM damping performance

The status of the report to LC office (and to the LC-related members at KEK in general) about estimation and measurement of HOM damping is summarized as follows:.

	HOM damping for 1 cell cavities		HOM damping for 9 cell cavities	
	Calculation	Measurements	Calculation	Measurements with
		with models or		models or with actual
		with actual		cavities
		cavities		
TESLA cavity (DESY)	?	?	Y	Y (actual cavity)
TESLA like cavity	Y	Y (copper model)	Ν	Y (actual cavity)
LL cavity	Ν	Ν	Y	N(actual cavity; data
				from new
				measurement still
				under analysis)

The answers from the two cavity groups to questions on the HOM damping performance from the LC office are summarized in the table as follows:

	TESLA like cavity		LL cavity	
Questions	Calculations	Measurement	Calculations	Measurement
	(estimations)	(verifications)	(estimations)	(verifications)
Any issues of	MP and		HOM damper with	Verification of
multipacting,	breakdowns are		new design will be	the new design
breakdowns, heat up of	expected to process		used to solve the	HOM damper
HOM dampers?	out easily. No		problems seen in the	has not been
	pickup probes were		past.	done yet.
	used in the vertical			
	CW test, to avoid			
	heating problems.			
Any issues of notch	No problems.		The notch band	No problem at
filter adjustment?			width is 3MHz in	2K high power
			design, while the	test.
			frequency shift of the	
			notch is less than	
			1MHz at low	
			temperature. Thus,	

		No problem.
Any other problems?	Strength and high	Analysis of HOM for
	power capability of	traveling mode
	ceramics	across the cavities is
	feed-through have	required.
	to be addressed.	
Plan of future	Rotational angle of	After verifying the
development?	the loop antenna is	present design with
	optimized with the	STF phase 1 cavities,
	STF phase 1.5	performance
	cavities. Study of	improvement of the
	feed-through will	performance will be
	be done within 2-3	studied toward STF
	years.	phase 2.

Comments from LC office:

TESLA like cavity :

LC office recognizes that the group claims the validity of the estimation method through a comparison between their single cell estimation and copper model measurement. The HOM of 9 cell cavity are estimated on the basis of estimation done with single cells. While no specific simulation exists for 9 cell cavities. However, measurements with a network analyzer and with a bead-pull method have been done for actual 9-cell cavities, and the results roughly satisfied the target. LC office considers that the method of evaluating the HOM damping performance is adequate. However, the group acknowledges an insufficient damping for the monopole mode. This issue has to be addressed through an improved design and experimental validation. LC office considers that it is desirable to perform an estimation HOM damping for 9 cell cavity in future.

LL cavity:

There is no HOM work for single cell LL cavity on both estimation and measurement. The estimations of HOM damping for 9 cell cavity have been done for an existing actual cavity and for the new design HOM couplers. However, measurements of the existing cavities have not been reported yet and the new design cavities are not yet completed. LC office considers that an initial study cycle of calculation, prototyping, measurement and validation is not yet completed for the HOM damping performance.

(3) Accelerating Gradient

	TESLA like cavity		LL cavity	
Questions	Calculation	Measurements	Calculation	Measurements
	(Expectation)		(Expectation)	
Gradient limit due	The preference on		The gradient	50MV/m has been
to the shape	the cavity shape		limit of L-band	established with
	is affected by our		~40MV/m is	single-cell cavities. The
	technology level.		considered given	best result with 9-cell is
	If FE is the		by the theoretical	36.5MV/m (w/o HOM
	dominant issue, a		limit of the	couplers). At STF0.5,
	shape with small		critical magnetic	Ichiro old 9-cell cavity
	Esp/Eacc would		field . Hence,	recorded 21.6MV/m
	be better. If the		cavities with	(full pulse width 1.5ms)
	quench at the		small Hsp/Eac is	
	equator		advantageous.	
	dominates, a		LL shape also	
	shape with small		has higher	
	Hsp/Eacc is		efficiency so that	
	better. Issue of		it can save	
	cavity drainage		operation power	
	during rinsing		by 10-20%. The	
	will not be a		draining after	
	problem whether		rinsing caused no	
	TESLA-like or		problem in our	
	LL.		experience with	
			single cell	
			cavities.	
Current limit of the	FE is the limiting	factor at TTF.	Step-function-like	X-ray generation hints
gradient	The 20MV limit se	een with 3 units	MP. Its on-set bel	navior is not inconsistent
	of our cavities is	s suspected to	with the empiric	al formula (comparison
	originate from EBV	V joints.	with T-mapping h	has not been done since
			TESLA single cell	at DESY). The FE onset
			with our best sing	gle-cell cavities is Esp ~

The questions by the LC office and the responses from the two groups are summarized as follows:

over 94MV/m, corresponding to Eacc 40MV/mfor 9-cell. Our 9-cell was limit by contamination of HPR pump. Hop better performance with degreasin Difference due to the choice of the cavit	ed pe g.
40MV/mfor 9-cell. Our 9-cell was limit by contamination of HPR pump. Hoj better performance with degreasin Difference due to the choice of the cavi	ed pe g.
by contamination of HPR pump. Hop better performance with degreasin Difference due to the choice of the cavi	pe g.
better performance with degreasin Difference due to the choice of the cavi	g.
Difference due to the choice of the cavi	
	ty
shape is unlikely in this area of issues.	
On FE : While Esp/Eacc (ICHIRO 2.3	6,
TESLA 2.0) is unfavorable, consider that	a
more dominant factor is the surfa	ce
treatment technology.	
Plan for achieving Improve the quality of EBW joints It is needed to overcome MP and end-grou	ıp
the gradient with next cavities. Aim at FE for realizing the ideal gradient with	
specification >30MV/m with no CBP, if 9-cell (observation from recent experiment	t).
possible. Then, intend to try Remove sulfur to resolve the MP.	
rinsing with H2O2 or detergent to The group will attempt improvement	of
address FE. Will be hard to judge rinsing effects by using detergent	or
which is more problematic out of $e thanol, or by using CS_2$.	
rinsing and assembly processes. FE triggered by MP can be suppressed 1	by
removing sulfur. FE coming fro	m
insufficient rinsing will be solved by fre	sh
EP. Sulfur is known to be a seed of FE as	nd
the measures for its removal is expected	to
be effective in reducing FE.	
In short, will try combination of fresh H	ΞP
and ethanol rinsing for 9-cell surfa	ce
treatment.	
Time scale of the Try with next two cavities to be Build 6 units of single-cell cavities	of
future plan completed in March,2008. IES#5-type and conduct statistical studies	of
the method developed in the pilot stud	ly.
This test will complete by Sep.2008.	-
The highest priority for 9-cell is to exce	ed
31 5MV/m for the units to install in STI	F1
(LL group is planning 2 or more cavities)	
(LL group is planning 2 or more cavities) Expected completion date is Sep.2008,	as
(LL group is planning 2 or more cavities) Expected completion date is Sep.2008, per the installation schedule to STF1.	as

9-cell cavities.	
------------------	--

Comments by the LC Office :

TESLA like cavities

As the next step the improvement of EBW is mentioned for achieving beyond 20MV/m or 30MV/m. We understand this includes improvement of edge machining of half-cells and optimization of EBW parameters, etc. Concrete proposal in the near future works and testing procedure, however, is still under discussion. The proposed strategy for FE issues is to try detergent etc which is the current world trend. LC office feels that their strategy in pursuing or inventing new approaches to address the gradient issue is somewhat weak.

LL Cavity :

The LL group views that the gradient limitation comes from FE at the endgroup and from MP, rather than from the equator region,. Their list of planned actions includes sulfur removal and improvement of rinsing capability. For the gradient achievement in the STF2 they offer several ideas such as single-cell tests, surface analysis, and cleaning of the EP liquid. However, their list needs more specific and persuasive plans, for instance, on understanding the mechanism of having remnant sulfur, application of lessons learned from single-cell cases to 9-cell cavities, and others.

(4) Integration with Cryomodules

Comparison of compatibility issues associated with integration of cavities with cryomodules.:

TESLA-Like Cavity Group	LL Cavity Group
The group argues to establish the firm, common	Basic stance is to maintain maximum compatibility
understandings of the component functionalities,	with DESY and FNAL designs. Compatibility with
including those from the installation and	the TESLA design is broken only when the group
maintenance standpoint, which presently seems	feels that they have strong enough reasons.
lacking,. Development of component	• CC coupler is designed to be compatible with
compatibility guidelines should be done on that	TTF3 coupler. But the sealing scheme based on
basis. The group feels that their design proposals	MO flanges is incompatible.
can survive such discussion.	• GDE does not have an established BC for the
• As for the designs of tuner, Helium vessel,	tuners, Their intention is to demonstrate good
magnetic shield, cavity flanges and seals,	performance of their ball-screw tuner, thereby
their intention is to persuade other GDE	making it the BC.
members of the superior aspects of their	• Ichiro cavity is compatible with TESLA-short
design and attain the concurrence	cavity as far as the total length is concerned.
• This group advocates a high-power coupler	But the beam pipe diameter and associated

with fixed coupling, which makes the assembly substantially easier. This is not BC, They feel that TTF3 or TTF5 coupler without cold bellows could be equally attractive. flange-type are different.

- The material of the He jacket is SUS, and its connection with the beam pipe is done through a Nb/Cu/SUS transition made with HIP. Thus it is incompatible with the TESLA-type He jacket that is made of Ti.
- The layout of the magnetic shield is tightly related to the tuner configuration, and is dependent on of the choice of the tuner.

Comments by the LC office:

TESLA-Like Cavity:

The basic plan of this group is to demonstrate the superiority of TESLA-like cavity technology and to propose adoption of this design as one that meets plug-compatibility requirements. Consequently they are not necessarily pursuing full compatibility with the TESLA-short all the time. Assessment of the tuner part, in particular the increased mechanical sturdiness of the cavity package, is relatively well developed. What is critical would be to make a persuasive statement with specific data on the kind of benefits available from this design. While they are making more systematic surveys since early 2008, more qualitative and quantitative statements are needed in writing.

•

LL Cavity:

Basic stance of this group is to actively pursue compatibility with TESLA short. However, they are planning to claim superior designs in several main parts, such as sealing, tuner, flanges, jacket and magnetic shield, and in so doing they anticipate breaking some aspects of compatibilities. The specifics of their plans are somewhat unclear on how exactly to experimentally show the superiority of their scheme for each these items. (Similar ambiguities in the work strategies exist in case of the TESLA-like cavity group.) The only widely accepted notion for the superiority of LL cavity is its lower surface current, and its specific benefit has been demonstrated only in tests of single-cell cavities. Thus many of their ideas, which might be good, are not yet reaching the stage where revision of BC is sought with their demonstrated performance records.

(5) Compatibility of the input couplers:

On development of input couplers that support the ultimate performance of each cavity shape.

TESLA like cavity	LL cavity
The coupler and the cavity shape are separate	• Sufficient performance to warrant successful
issues	operation of LL-shaped cavities has been
The high power test of couplers at the test stand	demonstrated with the capacitive coupling

verified required performance. The rf processing	(CC) coupler for: high-power RF transmission
of the installed coupler at STF Phase 0.5	(500kW/250kW in room/cold temperature
proceeded flawlessly.	environments), easy processing out of
	multipacting, smooth integration with the
	cryomodule, and tuning, both in
	room-temperature and low-temperature
	(FebMarch, 2008) operations.
	• Data has been collected for static and dynamic
	heat load, together with coupling performance
	during the cold test of FebMar. 2008. The
	coupling adjustability has bee shown to be
	nearly as per the design. The heat load and
	dynamic heat loss are under analysis.
	Strategies and design issues in cases of targeting
	operations at 35MV/m or 45MV/m:
	• 35MV/m: Prove the superiority of CC coupler
	from TTF3 coupler, and propose it to replace
	BCD. We will stress the advantages of high
	through-put, low cost and short rf process
	time, which has been made possible by
	separating the metallic parts and the ceramics
	window parts. Operation at 2MW is a strong
	proof of high-power margin, obtained thanks
	to the TiN coating that reduces multipacting.
	• 45MV/m: No additional cost exists to pay for a
	higher power transmission. Hence, no trade-off
	issues. The group intends to conduct a further
	study to confirm the required ceramics purity
	for ensuring long lifetime in higher power
	operation.

On question about the fixed coupling for the input couplers

TESLA like cavity	LL cavity
1) Benefits of the tunable coupling couplers:	We will follow the international specification
• It can ensure a pulse flattop without using a	for the input coupler coupling tune-ability. Our

cavity voltage feedback. For instance, if a10%	input coupler is can adopt both fixed and
error exists in the coupling, the operational	tunable coupling.
voltage need to by reduced by 0.5MV and the	
power divide ratio in the rf distribution needs to	
be revised, also. Since the pulse top is not flat in	
this case, it will be necessary to reduce voltage	
of the other cavities. (This can be recovered by	
using detuning control of the cavities, as well.)	
• It can accommodate adjustments after	
installation into the cryomodule, or even sudden	
voltage changes during operation. (This can be	
also recovered by using detuning control.)	
2) Tunable Coupling capability is covered by the	
input coupler and 3 stub tuner. Weak point of tunable	
input coupler is complicated installation procedure	
around cold-warm connecting flange and the initial	
cost of about 50M\$. There may be a problem of	
standing wave in between cavity and 3 stub tuner.	
3) Alternative procedure, cavity detuning control, is	
an important test item in the cryomodule test. It does	
not require any new hardware although there is loss	
of rf power efficiency.	

Comments from LC office: TESLA like cavity:

LC office recognizes that the input coupler for TESLA like cavity achieved sufficient performance to feed the specified power into the cavity. It is necessary to prove the heat load performance and dynamic heat loss performance. The group advocates a fixed coupler design for advantages of cost and handling. However, LC office interprets that they would feel less strongly if a variable coupling coupler is realized without having to use bellows in the cold part of the system. The group is presently conducting a systematic surveys of how the ILC ML can be made to work with fixed couplers. The LC office wish to encourage the group to produce a full write-up on this subject.

LL cavity:

LC office recognizes that the input coupler for LL cavity achieved sufficient performance to feed the specified power into the cavity. It is necessary to prove the heat load performance and dynamic heat loss performance by the module test. In case of applying this coupler for 35MV/m operation, LC office understands that the group intends to prove and stress its high power capability and low

cost. In case of applying it to 45MV/m operation, the group intends to prove its flawless performance. LC office feels that specific planning is required to conduct how these tasks are to be done in which timelines.

(6) Safety Regulation Issues:

Questions related to clearance of high pressure gas safety regulations

TESLA-Like Cavity Group	LL Cavity Group
• Analysis of the experimental results of Phase	• Direction of the HOM polarization might be
0.5 and 1 is still necessary. However, they do	changed. However, since this is an issue
not expect needs for fundamental design	outside the He jacket and does not affect the
changes.	safety regulation aspect.
• Lightweight build, easy assembly and	• Results from STF Phases 0.5 and 1 and
reduced cost will be pursued. However, these	analysis of gas safety issues might
are not directly relevant to the clearance of	necessitate redesign of the helium vessel
High Pressure Gas Safety Regulations.	endplates or its material. The magnitude of
	the required work is unclear.
	• If we are to implement the magnetic shield
	completely inside the helium vessel, the
	thickness of the end-half-cells will have to
	be increased. The optimization of the design
	through simulation will take roughly 1
	month.

Comments from LC office:

TESLA-Like Cavity Group:

Their intention is to proceed with the application process to the High Pressure Gas Regulation for STF Phase2 without fundamental design changes.

LL Cavity Group:

They indicate possible revisions of the endplate material, the related component designs for the helium vessel, and the thickness of the end-group half cells. If these changes are found necessary, they need to be experimentally validated before STF Phase2, leading to a potential schedule delay