KEK 加速器セミナー 「BNCTの現状と展望」 2015年6月10日

8MeV陽子線形加速器を用いた加速器 ベースBNCT装置の開発の現状

中本 崇志 (Cosylab Japan)

and COSYLAB

Your TRUSTED Control System Partner

2

- Cosylabの紹介
- □ BNCTとは
- いばらき中性子医療研究センター加速器BNCT *i*BNCTの紹介
- □ 現状と今後の課題
- □ パラメータの選択について

Your **TRUSTED** Control System Partner

Cosylabの紹介

4 The Company Cosylab

- Worldwide leader for control system integration of accelerators and large physics facilities, chosen by the majority of projects
- Approx. 95 employees
 - i.e. 75 "developers/engineer" FTEs effectively
- HQ in Slovenia
- Branches: Switzerland, Japan, Sweden, USA, China

Customers from nearly All Major Labs Worldwide Subsidiaries and Branches All Around the World

5

6 Key Accelerator References

Reference	Description
PSI - Swiss Light Source	SLS – Synchrotron radiation light source
& SwissFEL	SwissFEL – Free electron laser
ELI-NP	Laser and gamma beam facility
SLAC LCLS/LCLS-II	Free electron laser
European Spallation Source (ESS)	Neutron source based on high- power proton linac
PAL XFEL (South Korea)	10 GeV FEL
Varian Medical Systems (VMS) MedAustron	Proton / carbon ion cancer therapy
000	
Several 1000s of small projects	Device integrations,
	Trainings, Application devel's

<u>7</u> 本プロジェクトにおいて

□弊社の役割

■制御システムの開発

コミッショニング

■ビーム診断系の改良

■イオン源の改良とLEBTの新設

□ 今後お見知りおきを…

BNCTとは

■ Boron Neutron Capture Therapy ホウ素中性子捕捉療法

- 1. がん患者に¹⁰Bを含む薬剤を投与し、¹⁰Bをがん細胞に送達
- 2.中性子を¹⁰Bに衝突させ、核反応により発生する荷電粒子(α線と Li線)を用いてがん細胞を死滅させる。

主な生体構成要素に対する 中性子捕獲反応の断面積 ¹H(n,γ)²H: 0.322 barn ¹²C(n,γ)¹³C: 0.0034 barn ¹⁶C(n,γ)¹⁷C: 0.00018 barn ¹⁴N(n,p)¹⁴C: 1.81 barn

http://www.aec.go.jp/jicst/NC/iinkai/teirei/siryo2013/siryo22/siryo1-2.pdf

BNCTで利用する中性子捕獲 反応の断面積 ¹⁰B(n,α)⁷Li: 242 barn ¹⁰B(n,α,γ)⁷Li: 3595 barn

がん細胞に選択的にダメー ジを与えることができる

11 BNCTの歴史

1932年	Chadwickによる中性子の発見				
1936年	中性子補足療米国における試験検討り提唱				
1951~1961年	米国BNLとMITにおいて研究用原子炉を用いた試験治療を実施				
1968年	畠中らが脳腫瘍に対してBSHを用い日本の第一例の治療照射を 日立炉で実施 日本における発展				
1977年	武蔵エ大炉を医療専用炉に改造し、定常的に治療照射が可能に				
1983年	第一回中性子補足療法国際会議が開かれる				
1987年	三島らによりBPAを用いてメラノーマの臨床治療研究を開始 (京 大炉&武蔵工大炉)				
1994年	米国BNLとMITにおいて治療 再開 は の 一 本 一 一 一 一 一 一 一 一 一 一 一 一 一				
1996年	京大炉重水中性子が一般のなり、「「「「「「」」」の「「」」の「「」」「「」」「「」」」「「」」」「「」」」				
1997年	オランダPetten炉の熱外中性子を用いた治療を開始				
1999年	フィンランドで熱外中性子を用いて治療開始 日本においてJRR-4で治療開始				

日本における治療照射の実績は240例以上

古林徹,"中性子捕捉療法の現状と将来展望-放射線医学物理工学の視点-",日本放射線技術学会雑誌 (2000年)

原子炉(JRR-4)での治療風景

13 BNCTの臨床実績 ①悪性脳腫瘍

標準X線分割照射

■生存期間中央値 13.5 M ■生存率 1年: 48.0%, 2年20.0%、5年: 4.0%

BNCT

■生存期間中央値 25.7 M ■生存率:1年:91.6%, 2年57.1%

(Yamamoto, Matsumura et al. Radiother Oncol, 2009)

14 BNCTの臨床実績 ②頭頸部がん

写真提供:大阪大学

世界で最初の頭頸部がんに対するBNCT BNCT分野の大きなブレイクスルー

15 BNCT向け中性子源

現実問題として、日本ではJRR-4は震災以後停止。廃止措置計画を策定する施設へ。 現在、BNCT向けに使える原子炉は京大炉KURのみに。 → BNCT向け加速器の開発の必要に迫られている。

<u>16</u> 他の放射線治療との違い

- □ 放射線治療の既往があっても適応可能 (別の放射線治療後に再発したがんなどにも適応可能)
- □ 浸潤性の強いがん、多発・再発がんなどに有効
- これまでの放射線治療では治療困難だった悪性黒色腫、 悪性脳腫瘍、頭頸部腫瘍などにも適応可能
- □ 照射回数は概ね1回で済む

	X線・電子線治療	陽子線、重粒子線	BNCT
世界における	×	△	◎
日本の位置付け	欧米企業独占	欧米と競争中	日本が独走
治療施設コスト	装置価格	陽子線:約70億円、	(目標)
	10億円以下	重粒子線:約150億円	30億円以下
治療の位置づけ	保険治療	先進医療	臨床研究

18 BNCT向け中性子のエネルギー

図3 中性子のカーマ保敷 組成組成は H:11.1wt%、C:12.7wt%、N:2wt%、O:74.2wt%の場合 2熱中性子束分布* (どの程度の深さで最も治療効果が高いか)

 ¹⁰Bが集積するがん細胞に多くの熱中性子 を当てる必要がある
 (2)体表面からある程度深いところにある腫瘍 に熱中性子を届けるには、熱外中性子が良い
 (3)正常細胞に対する影響を抑えるには熱外中 性子が良い

→ 熱外中性子を提供する中性子源が必要

* "BNCT基礎から臨床応用まで", 医用原子力技術研究振興財団 (2011年) より

BNCT向け加速器の技術選択

治療を成立させるには…

熱外中性子束が 1×10⁹ n/cm²/S 以上必要となる

→ 陽子加速器の観点から見ると、数 MeVのビームエネルギー + 数十kWの大出力のビームパワーが必要となる

我々のプロジェクトではRFQ + DTLで 8 MeVとBe標的を選択 (詳細は後述)

19

いばらき中性子医療研究センター 加速器BNCT施設 *i*BNCTの紹介

21 産学官連携プロジェクト

Accelerator

Target

Moderator

Collimator

Rad. shielding

Tsukuba University

Project management

JRR-4

Medical system

Monitoring

Hokkaido University

Neutron science, moderator

JAEA

JRR-4

moderator design

Radiation safety

Mitsubishi heavy industries LTD. • Manufacturing

NAT, ATOX, Taiyo Valve, Toyama, Nihon Koshuha, NEC/Tokin,Cosylab,,,many companies are involved

Ibaraki prefecture

いばらき中性子医療研究センター

23 いばらき中性子医療研究センター

加速器構成と主要パラメータ 24

RFQとDTLはJ-PARCライナックの設計を利用。 RF周波数は324MHz。

RFQ

²⁶ RFQとDTLのスペック (J-PARCとの比較)

ITEMS	UNIT	iBNCT		J-PARC	
		RFQ	DTL	RFQ	DTL1
LENGTH	m	3.1	3.004	3.1	9.921
BEAM CURRENT	mA	50	50	50	50
BEAM PULSE WIDTH	msec	1.0	1.0	0.6	0.6
INJECTION ENERGY	MeV	0.05	3	0.05	3
OUTPUT ENERGY	MeV	3	8	3	19.716
PEAK RF WALL LOSS POWER	MW	0.34	0.32	0.34	1.06
PEAK BEAM POWER	MW	0.15	0.25	0.15	0.84
TOTAL RF POWER (@50mA)	MW	0.49	0.57	0.49	1.90
Repetition Rate	Hz	200	200	50	50
AVERAGE RF WALL LOSS POWER/m (RFQ+DTL)	kW	21.6 (132) Duty factor: 20%		3.2 (42) Duty factor: 3%	
COOLING WATER FLOW RATE @ $\Delta T=0.1^{\circ}$ C	L/min.	3,000 (19,000)		460 (6,000)
COOLING WATER FLOW RATE @ ΔT=10° C	L/min	30 (190)			

Courtesy of H. Matsumoto

モジュレータ電源の設計・製作: Dawonsys社 (韓国)

加速管の冷却 29

Courtesy of H. Matsumoto

30 標的の開発

- □ ⁷Liや⁹Beに陽子が大量に照射されると水素ガスとなりブリスタリン グと呼ばれる現象により標的に損傷が生じる(標的の寿命に影響)。
 - あるビームエネルギー以下(およそ2MeV)では中性子生成に寄与しない。
 →標的の厚さを飛程以下にし、ブリスタリングに強い金属(水素吸蔵金属)であるPdを標的の後ろに置き、三層構造とした。異種金属間はHIPで 接合。

31 ブリスタリングと標的の寿命

Pdもブリスタリングに対して完全ではなく寿命がある オーダーエスティメーションとしては、BINPにおける 200 keVビームでの実験結果より、我々の標的は半年程 度か

Element	Yield point, 10 ⁷ Pa	Diffusion activation energy E_D , eV	Dissolution energy E_{S} , eV	Blistering threshold, 10 ¹⁸ cm ⁻²
Cu	20-50	0.4	0.37	0.4–0.1
W	50-90	0.39	1.03	2–4
Fe	12–15	0.05	0.27	80–150
Pd	20	0.23	-0.11	200–300
V	31	0.045	-0.34	not observed up to 120
Та	57	0.14	-0.35	not observed up to 230

S.V. Polosatkin et. al., "Experimental Studies of Blistering of Targets Irradiated by Intense 200 keV Proton Beam", 9th International Conference on MODIFICATION OF MATERIALS WITH PARTICLE BEAMS AND PLASMA FLOWS (2008)

□ 実際に8 MeV陽子ビームで確かめるしかない

32 標的の熱負荷

- □ 5.6 MW/m²の熱流束
 - 80 kWビームパワー、12cm角の均等なビームとする
- □ レーザーフラッシング法で熱伝導率は確認済み
- □ 水による冷却は核沸騰領域を利用する
 - 流速を 10 m/s に設定
 - 実際にどの程度の熱流束耐えられるかは実験で確かめるしかない
 - 8 MeV陽子ビームで直接調べる

Figure 2. Dependencies of target surface temperature at water velocity 3 m s⁻¹ on heat density: solid line – measured, touch line – calculated.

B. Bayanov, V. Belov, S. Taskaev, "Neutron producing target for accelerator based neutron capture therapy" Journal of Physics: Conference Series 41 (2006) 460-465.

現状と今後の課題

₄ RFコンディショニング

34

<u>35</u> ファーストビーム (2014年12月)

37 ビーム運転に向けて

□ 改良型イオン源の組立、LEBTの設置中

- ■大電流化するために改良中
- ECRイオン源: 50 keV、2.45 GHz (パルス)

■コイル通電試験、アライメント、真空引き、高圧試験、RF 試験を経て今月末にはビームを出したい

イオン源からビームが出た後で1度ビーム を8 MeVまで加速して中性子ビームを発生させる予定

38 同時並行で進行中

- □ モジュレータの増強
 - CCPSの熱除去の問題を解決
 - CCPSが1台だったのを5台に (定格パワーを出せるように)
- □ 中性子スペクトルの測定
 - ボナー球を用いた測定を検討
- □ ビーム診断系のチェックと改良
 - BPM、CT、ワイヤスキャナモニタのビームでの動作確認
 - スクリーンモニタをワイヤスキャナモニタに置き換え
 - ビームエネルギー測定ラインの設置
 - ■標的の温度監視のための赤外線カメラの設置
- □ 速いインターロックの整備
 - FastMPSの開発
 - LEBTにチョッパーの設置

部位	課題	方策
イオン源 LEBT	必要なピーク電流とエ ミッタンスが得られるか	ビーム運転により検討。エミッタンスモ ニタ製作中。必要ならば、電極形状を最 適化、LEBTを短くする。
加速管	RFコンディショニング	時間をかけてやるしかないか。方法の見 直しも要検討。
	冷却水の制御	RFコンディショニングを進めて、デュー ティーが上がってから試験開始。
	ビームロスの評価	RFQの単独試験で評価。ロスモニタの設 置を検討。
光学系	RFQのアライメント	RFQの単独試験結果や今後のビームコ ミッショニングの結果により判断。
	RFQとDTLのマッチング	RFQの単独試験により課題が明確になる。
標的	ブリスタリング・寿命	定格ビームが出て初めて試験可能。
	熱除去	定格ビームが出て初めて試験可能。

パラメータの選択について

- <u>41</u> パラメータの最適化
 - □ 中性子源としてパラメータの最適化は難しい
 □ 技術選択にあたっての主なポイント
 治療に十分な熱外中性子束が得られるか
 不要な放射線(高速中性子、γ線)の混入率を少なく
 装置の放射化の低減
 設置面積
 - コスト
 - ■稼働率
 - □加速器ベースBNCT装置には様々な加速器・標的の組み 合わせがある
 - ■加速器1つとってもサイクロトロン、RFQ、静電加速器など が考えられる
 - ■明確なコンセンサスがあるわけではなく、各グループ間の 競争となっている

<u>42</u> 加速器ベースBNCT中性子源施設 (参考)

	設置機関	状況	標的	加速器	ビームエネルギー	ビーム電流
	京都大学	治験中	Be	サイクロトロン	30 MeV	1 mA
\bigcirc	総合南東北病院	建設中	(同上)			
2	筑波大学 (<i>i-</i> BNCT)	建設中	Ве	RFQ + DTL	8 MeV	平均 10mA
	沖縄科学技術大学院大学	設計中	Ве	RFQ + DTL	(設計中)	(設計中)
国	立がん研究センター	試験中 (?)	固体Li	RFQ	2.5 MeV	CW 20 mA
名	古屋大学	工場試験中	固体Li	Dynamitron	1.9~2.8 MeV	15 mA以上

機関	状況	標的	加速器	ビームエネル ギー	ビーム電流
University Hospital Birmingham (UK)	?	固体Li	Dynamitron	Typ. 2.8 MeV	Typ. 1 mA
INFN LNL (Italy)	建設中	Be	RFQ	5 MeV	CW 30 mA
BINP (Russia)	?	固体Li	タンデム	2 MeV	3 mA (?)
CNEA (Argentina)	?	固体Li	タンデム	2.4 MeV	30 mA

注1) 一部古いデータなどがあるかもしれないがご容赦願いたい 注2) 他にも建設・計画中のものあり

- <u>43</u> ポジショントーク
 - □ 病院設置型を目指している
 - □ なぜBeか?
 - 固体Liは融点(約180度)が低すぎて熱負荷の除去が困難
 液体Liは病院には受け入れがたいのではないか
 - □ ビームエネルギーと平均電流
 - 必要な熱外中性子束を確保しつつ、どこまでビームエネルギーを下げられるか
 - *i*BNCTでは 8 MeV
 - このビームエネルギーであれば放射化を抑えられるだろうと考えられる
 - 平均電流 10 mA あれば治療 は十分成り立つ

モデレータ材料の中性子に対する反応断面積

44 ここまでで分かっていること

□ RFQの表面電界は下げた方が良い
 ■ RFコンディショニングで大分苦労しているので

- ビームエネルギーはもう少し高くし、ビーム電流を下げた方が開発 は楽
 - 11 MeVが良いのではないかという検討結果もある(北大)
 - ビームエネルギーを少し高くした場合のガンマ線・高速中性子混入率と、残留放射能について検討する必要あり

□ RF源は2つに分けるべき

RFQとDTLと性質の異なるものを1つのRF源でドライブするのは 運転上制約が大きい

沖縄科学技術大学院大学では、より病院設置に向くものを作るためこれまでの経験を活かしていきたい

46 まとめ

□ BNCTとは

- ホウ素薬剤と中性子線の組み合わせによりがん細胞を選択 に攻撃できる、今までの放射線治療とは異なる治療方法と して期待されている。
- ■中性子源として加速器が期待されており、iBNCTを始めとしていくつかの加速器BNCTが建設・計画中である。

□ *i*BNCTでは

- ■病院設置型として8MeV、平均電流10mA、Be標的を選択
 ■加速器としてはJ-PARCのフロントエンド技術を利用
- ■ファーストビーム(陽子ビーム)は迎えた
- ■現在、治験に必要な大電流化に向けて計画推進中
- □ 次の計画に向けて
 - iBNCTでの成果をフィードバックしたいと考えている

- [IN1] M. Yoshioka et al., Construction of Acceleratorbased BNCT facility at Ibaraki Neutron Medical Research Center, LINAC14, Aug. 2014.
- [IN 2] 吉岡正和他,「いばらき中性子医療研究センター における加速器 BNCT 施設の建設,中間報告」,第10回日 本加速器学会年会,2013年8月.
- □ [IN 3] 小林仁他,「いばらき中性子医療研究センターにおける加速器BNCT施設の建設」,第11回日本加速器学会年会,2014年8月.
- □ [IN 4] 熊田博明,「加速器ベースBNCT治療装置の開発に おけるPHITS技術の適用」, RISTニュース No. 56 (2014).
- □ [IN 5] 熊田博明, 山本哲哉, 「JRR-4における中性子捕捉 療法の線量評価」, 保健物理, 42(1), pp 23-37, 2007.

48 参考文献

- □ [EX1] 財団法人 医用原子力技術研究振興財団,「BNCT 基礎から臨床応用まで — BNCTを用いて治療にかかわる 人のためのテキスト—」, 2011年9月
- [EX2] IAEA-TECDOC-1223, "Current status of neutron capture therapy", 2001.
- □ [EX3] 岡部晃大, "BNCT用小型加速器中性子源", OHO'12
- [EX4] 古林徹, "中性子捕捉療法の現状と将来展望 放射線医学物理工学の視点-", 日本放射線技術学会雑誌 (第56巻、第6号), pp. 780 790, 2000.
- □ [EX5] 河内清光, "最近のBNCTの話題 –加速器BNCT-", 医 用原子力だより (第14号), 2014.

THANK YOU!

中本 崇志 **COSYLAB Japan** Tel.: +81 (0) 90 5058 8547 E-mali: takashi.nakamoto@cosylab.com Web: www.cosylab.com

