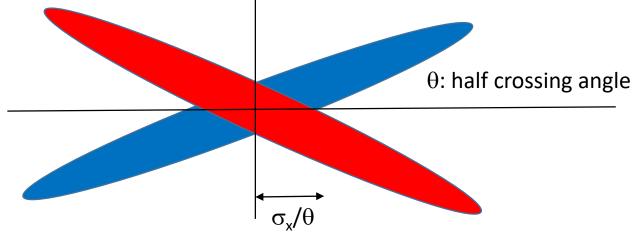
Coherent Beam-beam instability in collision with a large crossing angle


K. Ohmi (KEK)

Accelerator Physics seminar

June 29, 2017, KEK

Thanks to D. Shatilov, K. Oide , N. Kuroo, D. Zhou, F. Zimmermann Collision with a large crossing angle

- クラブウェストと組み合わせて、最近の円形電子陽 電子衝突加速器の設計に広く使われるようになった。
 (P. Raimondi)
- 特徴づける量、Piwinski角σ_zθ/σ_x. 衝突領域に対する バンチ長
- 実証実験DAFNA $\sigma_z \theta / \sigma_x = 2$, with crab waist
- SuperKEKB σ_zθ/σ_x=20、この方式での初めての本格 的な加速器(without crab waist)

この衝突方式に死角はないか?

- DAFNEの実験はPiwinski角が2と小さい。KEKBは1
- Beam-beam simulationによる検討がされてきたが、
 ほとんどはweak-strong simulationだった。
- その理由は後述するが、バンチを進行方向にスライ スするがその数が大きくなる。N_{sl}=10σ_zθ/σ_x
- SuperKEKBのstrong-strong simulationは衝突当たり N_{sl}²=200x200=40,000回のポテンシャル計算。
- Weak-strongではN_{sl}回、複素エラー関数からガウス分 布によるビームビーム力を計算。数分でルミノシティ 計算ができる。
- ・クラブウェストと組み合わせると、weak-strongでは ビームビームパラメータ、ξ=0.1は簡単に越えられる。
- •これは本当か

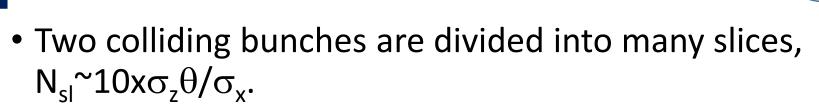
Beam-beam limit

Luminosity

$$L = \frac{N^2 f_{rep}}{4\pi\sigma_x \sigma_y} R\left(\frac{\sigma_z}{\beta_y} \text{ or } \frac{\sigma_\chi}{\theta_c \beta_y}, \frac{\theta_c \sigma_z}{\sigma_x}\right) \qquad \begin{array}{l} \text{f}_{rep}: \text{ collision freq.} \\ \theta_c: \text{ half crossing angle} \end{array}$$

N=N=N: bunch population

• $\frac{\sigma_z}{\beta_y}$ or $\frac{\sigma_x}{\theta_c \beta_y}$: hourglass (衝突領域と β_y の比), $\frac{\theta_c \sigma_z}{\sigma_x}$: normalized crossing angle (Piwinski angle)


• Tune shift
$$\xi_y = \Delta v_y = \frac{Nr_e}{2\pi\gamma} \frac{\beta_y}{\sigma_y(\sigma_x + \sigma_y)} R\left(\frac{\sigma_z}{\beta_y} \text{ or } \frac{\sigma_x}{\theta_c \beta_y}, \frac{\theta_c \sigma_z}{\sigma_x}\right)$$

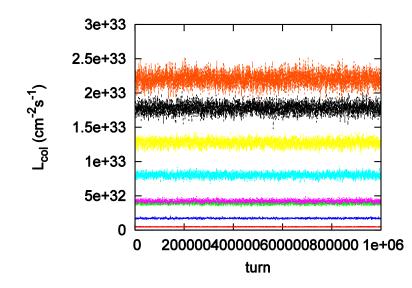
- Nを増やすとビームサイズ特にyが大きくなりtune shiftは飽 和し、ルミノシティはN²で増えなくなる。この状態をBeambeam limit. $L = \frac{N\gamma f_{rep}}{2r_e \beta_v} \xi_y \qquad \sigma_x \gg \sigma_y$
- この式はまたアワーグラスが効かなければ、β が小さいほどルミノシティが大きくできることを示す。大衝突角
- SuperKEKBはcrab waistを使わない。IR非線形が強すぎて、crab waist sextupoleの非線形がIRでキャンセルできず、DAが小さくなってしまう。

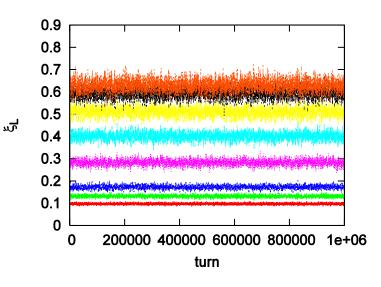
Weak-strong and strong-strong • Weak-strong simulation

- - One (strong) beam is assumed to be fixed charge distribution, and the other (weak) beam is represented by macro-particles.
 - Beam-beam interaction is evaluated by tracking the macro-particles in the electro-magnetic field induced by the fixed charge distribution.
 - The strong beam is assumed to be Gaussian distribution in most cases.
- Strong-strong simulation Both beams are represented by macroparticles.
 - Beam distribution is represented on meshed space using Particle In Cell method. Arbitrary and self-consistent distribution of two beams are • treated.
 - Statistical noise of macro-particles induces an fluctuation in potential calculated by PIC. The unphysical emittance growth by the noise is cared in the strong-strong simulation.
 - As an approximation, two beams are represented by Gaussian whose sizes are determined turn-by-turn. It is called Soft Gaussian approximation.
 - Strong-strong simulation based on PIC is more popular than the soft Gaussian • approximation.
- Quasi-strong-strong simulation
 - Repeat weak-strong simulation with keeping self-consistency.

Weak-strong simulation for Large crossing angle

 $s_{pi} = (z_p - z_i)/2$

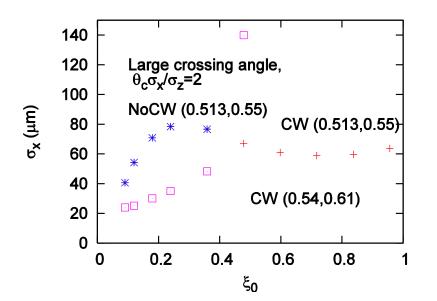

Zp

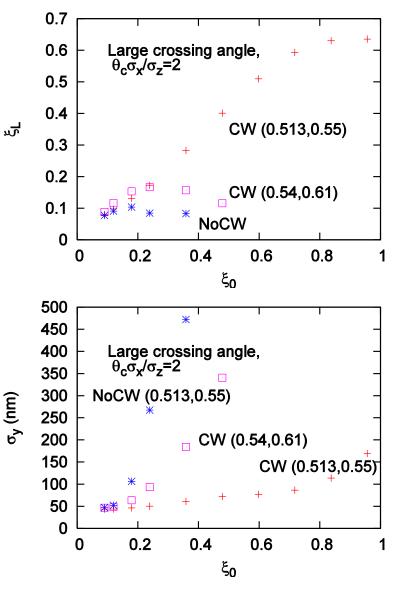

- Calculate slice-particle collision at $s_{pi} = (z_p z_i)/2$.
- Crab waist transformation at IP.

Large crossing angle and crab waist weak-strong simulation

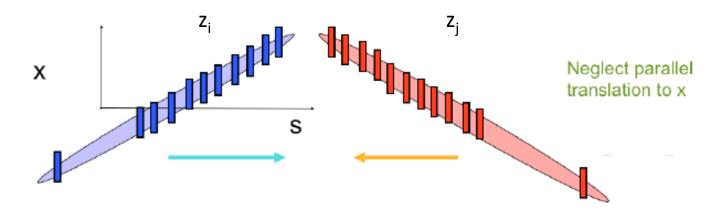
- Beam-beam parameter $\xi_{L}=0.6$ is achieved for collision with crab waist in weak-strong simulation, (v_{x} , $v_{y}=0.51$,0.55).
- Beam-beam parameter is saturated at $\xi_{L}=0.1$ without crab waist.

Luminosity evolution for scanning bunch population



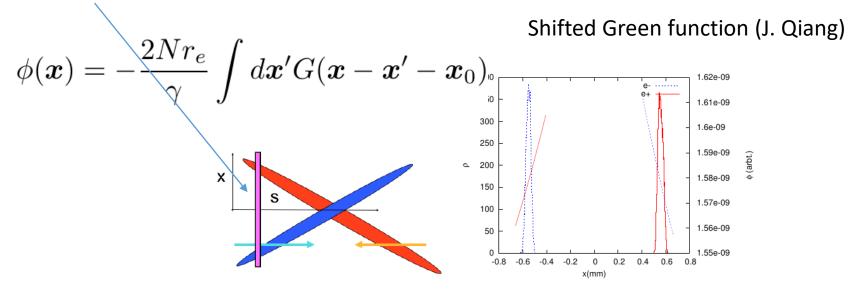


Equilibrium beam-beam parameter and beam size in weak-strong simulation


 ξ_{max} ~0.6 for (v_x, v_y) =(0.51,0.55) ξ_{max} ~0.2 for (v_x, v_y) =(0.54,0.61) σ_y behavior correlates to Luminosity.

ξ_{max}チューンによって、ほとんど天井知らず

Strong-strong simulation for Large crossing angle



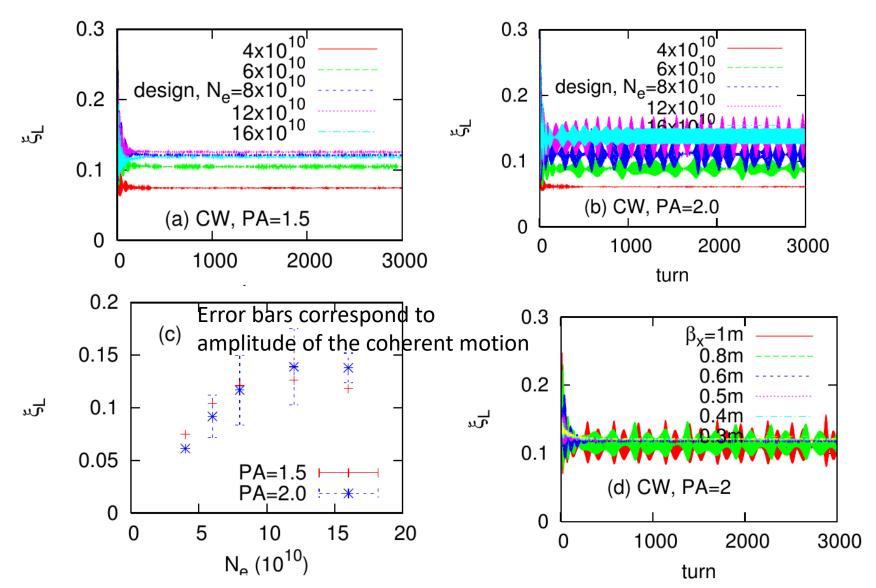
- Two colliding bunches are divided into many slices, N_{sl} ~10x $\sigma_z \theta / \sigma_x$.
- Sort slices with their positons $z_i + z_i$, collision order.
- Each slice contains >10,000 macro-particles
- Solve potential slice-by-slice collision, or Gaussian approx.

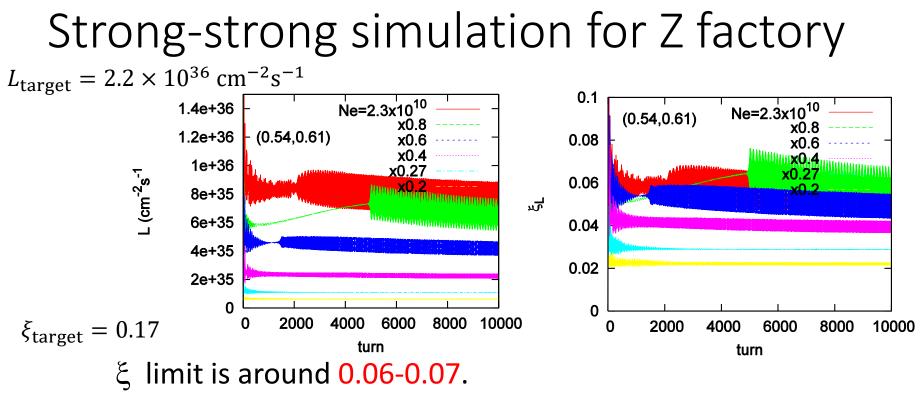
Several option of Strong-strong simulation

- Gaussian approximation using turn-by-turn RMS values.
- Gaussian approximation using turn-by-turn Gaussian fitting.
- PIC for core part and Gaussian approximation for slice collision with large offset.
- Complete PIC using shifted Green function

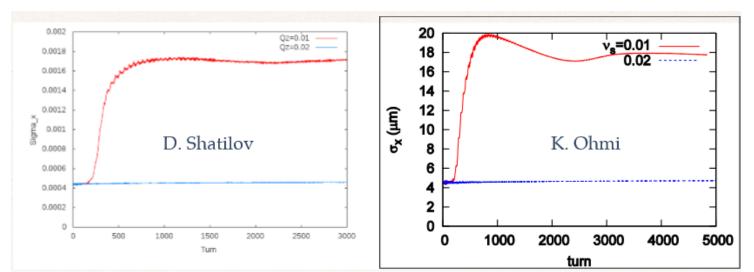
Example of shifted potential for collision with large offset.

Coherent beam-beam instability

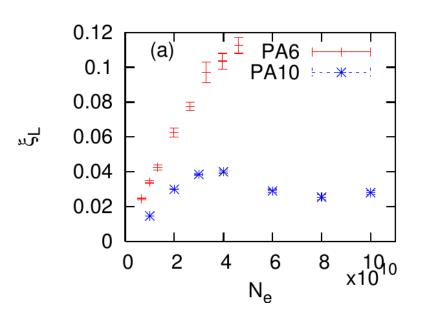

- A coherent beam-beam instability in head-tail mode was found to start beam-beam studies using strong-strong simulation.
- In Strong-strong simulation, both beams which are represented by macro-particles, interacts with each other in their classical EM field.
- The instability is cross-checked by D. Shatilov using quasi-strong-strong simulation.

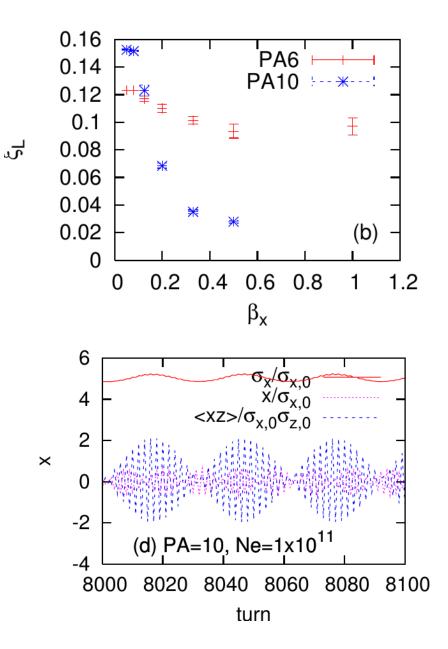

Parameters studied by early 2017

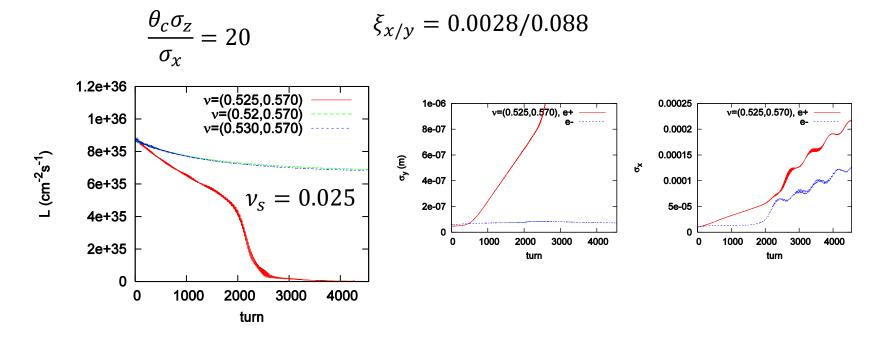
Parameter		Supe	erKEKB	FCC-ee-Z		Н
		design	commissioning	HiLum	base	
Energy	$E_{+/-}$ (GeV)		4/7	45.5	45.5	120
Bunch population	$N_{+/-}(10^{10})$	9/6.5	6.3/5	10	3.3	8
Emittance	$\varepsilon_{x/y} \; ({\rm nm/pm})$	3.2/8.64	3.2/44	0.2/1	0.09/1	0.61/1.2
Beta at IP	$\beta^*_{x/y} \ ({ m m/mm})$	0.032/0.27	0.25/2.2	0.5/1	1/2	1/2
Bunch length	$\sigma_z ~({ m mm})$		6	6.7	3.8	2.4
Energy spread	$\sigma_{\delta}~(\%)$		0.08	0.22	0.09	0.12
Damping time	$ au_x/T_0$		4000	3000		150
Synchrotron tune	$ u_z$	().025	0.036	0.025	0.056
Luminosity per IP	$L (10^{34} \text{ cm}^{-2} \text{s}^{-1})$	80	-	207	90	5.1
Beam-beam	$\xi_{x/y}$	0.0028/0.088 -		0.025/0.16	0.05/0.13	0.08/0.14
Piwinski angle	$\sigma_z heta_c / \sigma_x$	20	8.7	10	6	1.5

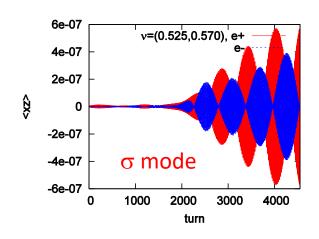

Simulation for H

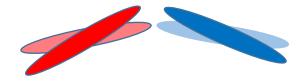
- $\xi_L = \frac{2r_e\beta_y}{N\gamma f_{rep}}L$
- PA=1.5 in the design. Safe for the instability



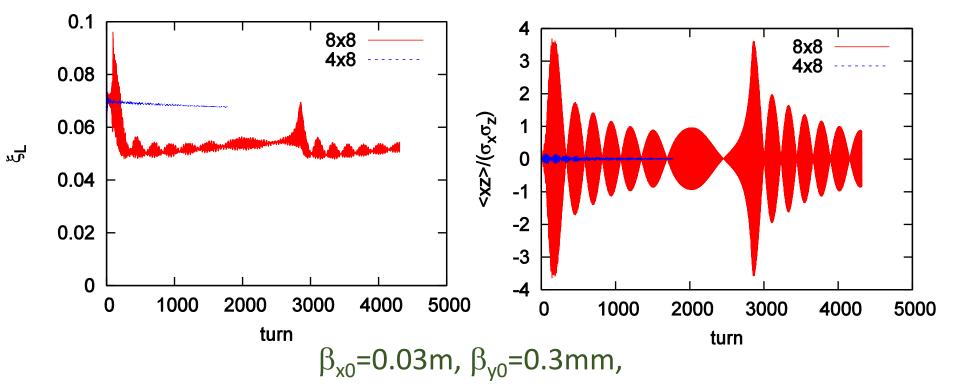

Coherent instability is strong.


Simulation for Z


- Larger PA is more serious
- σ mode of head-tail motion, in which headtail phases of two beams are in phase, is seen.

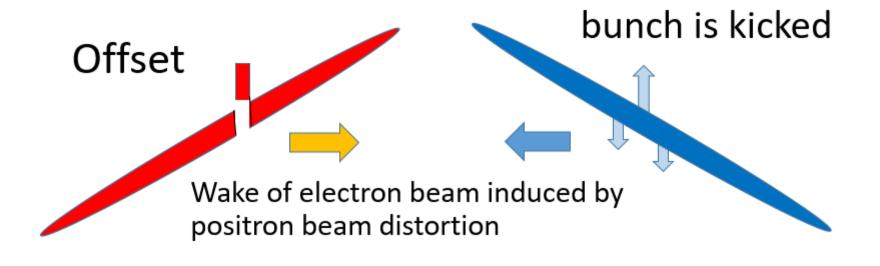


Strong-strong simulation in SuperKEKB

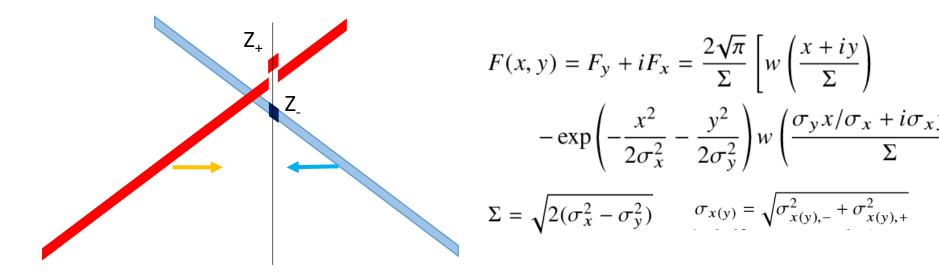

Strong-head-tail instability is seen only in limited tune. The stopband seems narrow.

SuperKEKB Phase 2

 $\beta_x = 8x\beta_{x0}, \beta_y = 8x\beta_{y0} \text{ and } \beta_x = 4x\beta_{x0}, \beta_y = 8x\beta_{y0}$


I₊=1mA, I₋=0.8mA, Crab waist

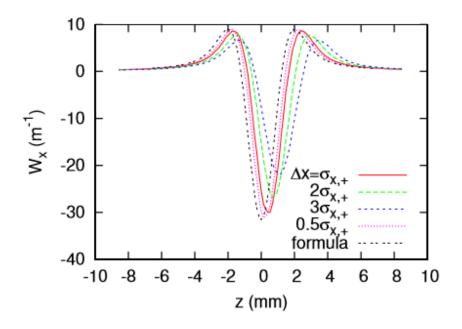
This instability can be observed in SuperKEKB Phase II commissioning. Phase II starts from 2018.


Study of the mechanism of the instability

• Wake force during collision

Analytic expression of the wake force

• Slice-slice force $\Delta p_x^{(-)} = \frac{N_+ \rho_0(z_+) r_e}{\gamma} (F(x_- - x_+ - \Delta x) - F_x(x_- - x_+))$

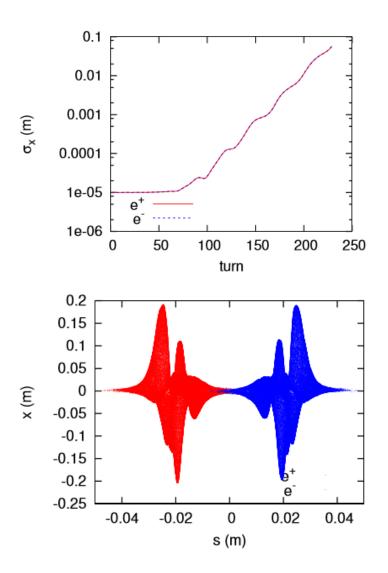

$$F_x((z_- - z_+)\theta_c - \Delta x, 0) - F_x((z_- - z_+)\theta_c, 0) \qquad \qquad x_{\pm} \approx z_{\pm}\theta_c$$

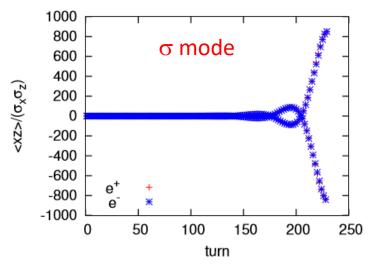
$$= - \left. \frac{\partial F_x(x,0)}{\partial x} \right|_{x=(z_--z_+)\theta_c} \Delta x$$

 θ c: half crossing angle

Wake force due to beam-beam collision

$$\Delta p_{x,\pm}(z_{\pm}) = -\int_{-l}^{l} W_x(z_{\pm} - z'_{\mp})\rho_x(z'_{\mp})dz'_{\mp} \qquad l \sim 3\sigma_z$$


$$\Delta p_x^{(-)} = -W_x(z_- - z_+)\rho_0(z_+)\Delta x_-$$


 $\rho_x(z_+) = \rho_0(z_+)\delta(z_+' - z_+)\Delta x$

$$W_x(z_- - z_+) = \frac{N_+ r_e}{\gamma} \left. \frac{\partial F_x(x, 0)}{\partial x} \right|_{x = (z_- - z_+)\theta_c}$$

Minimum
$$W_x(0) = \frac{N_+ r_e}{\gamma} \frac{2}{\sigma_x(\sigma_x + \sigma_y)}$$
 $\sigma_{x(y)} = \sqrt{\sigma_{x(y),-}^2 + \sigma_{x(y),+}^2}$
 $W(z) = 0 \text{ at } z \approx \pm 1.3 \sigma_x / \theta_c$
Maximum $W \approx 0.28 |W_x(0)|$ at $z \approx \pm 2.2 \sigma_x / \theta_c$

Simulation result using the wake

Correlated wake simulation, not beam-beam simulation.

Both beams have the same distribution. σ mode oscillation.

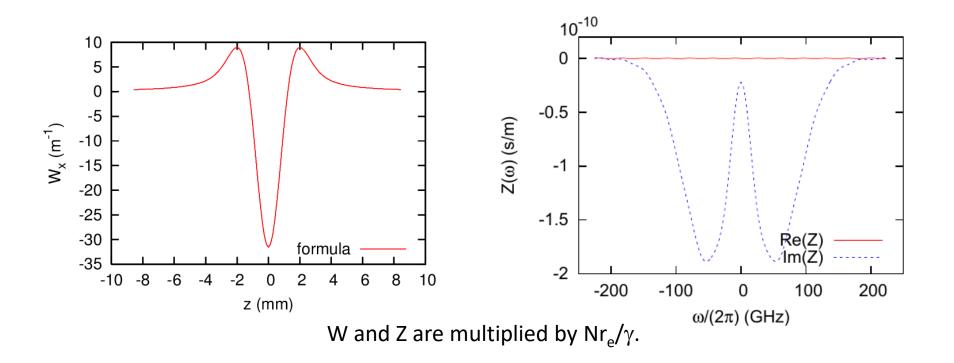
Instability theory

- Two beams had the same (identical) distribution in the simulation, σ mode head-tail.
- The two beam wake force is treated as a single beam wake force for σ mode.

$$\Delta p_{x,\pm}(z_{\pm}) = -\int_{-l}^{l} W_x(z_{\pm} - z'_{\pm})\rho_x(z'_{\pm})dz'_{\pm} \qquad \sigma \text{ mode}$$

• For π mode, the sign of wake is inversed.

$$\Delta p_{x,\pm}(z_{\pm}) = + \int_{-l}^{l} W_x(z_{\pm} - z'_{\pm}) \rho_x(z'_{\pm}) dz'_{\pm} \qquad \pi \text{ mode}$$

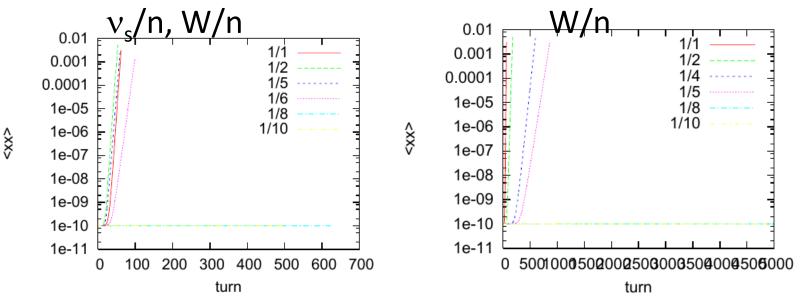

• Conventional instability theory can be applicable.

Impedance $Z_x(\omega) = i \int_{-\infty}^{\infty} W_x(z) e^{-i\omega z/c} \frac{dz}{c}$

- The wake is symmetric for z.
- The impedance is pure imaginary and symmetric for $\boldsymbol{\omega}.$

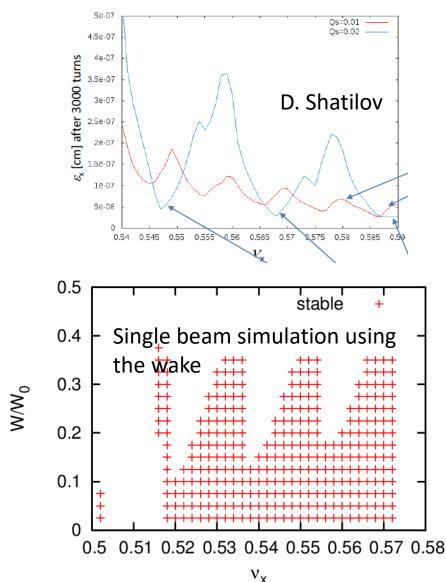
Mode coupling theory

$$(\mu - \mu_x - l\mu_z)a_{k\ell} = \sum_{k'l'} M_{kl,k'l'}a_{k'l'}$$
$$M_{k\ell,k'\ell'} = \frac{p_x}{2}i^{l-l'-1}\omega_0 \sum_{p=-\infty}^{k'l'} Z(\omega')g_{kl}(\omega')g_{k'l'}(\omega')$$

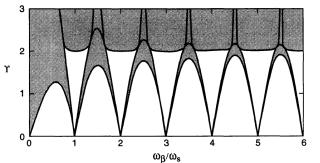

• Neglect off-diagonal component, the effective impedance

$$M_{k\ell,k\ell} = -i\frac{\beta_x}{2}\omega_0 \sum_{p=-\infty}^{\infty} Z(\omega')g_{kl}(\omega')^2 \approx -i\frac{\beta_x}{2}\int_{-\infty}^{\infty} d\omega' Z(\omega')g_{kl}(\omega')^2$$
$$g_{kl}(\omega) = \frac{1}{\sqrt{2\pi k!(|l|+k)!}} \left(\frac{\omega\sigma}{\sqrt{2c}}\right)^{|l|+2k} e^{-\omega^2\sigma^2/2c^2}$$

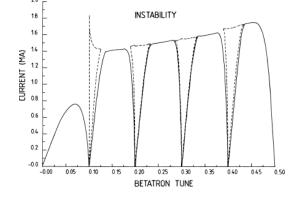
- Diagonal M, which has only real part, induces tune shifts for *I*-th modes.
- The impedance is symmetric for ω. Terms with I+I'=odd is zero. No coupling between 0-1, 2-3... modes.
- Ordinary theory based on a distributed wake shows weak instability for this type of wake/impedance.


Simulation of single beam instability using the wake force

The growth disappears v_s/n , W/n, n-> ∞



- W/8 is stable independent of v_s . Strength of the localized W is essential.
- The wake with opposite sign is stable. π mode head-tail is stable.
- Growth is not sensitive for Z_{peak} at z=0 or not.


Localized wake force due to beam-beam interaction

 Synchro-beta structure should be seen.

A. Chao, Phys. Collective Instability ...J. Jowett, CERN Rep LEP-474 ('83)

F. Ruggiero, PA20, 45 (1986)

Theory for instability due to a localized wake force based on the bunch lengthening theory by K. Oide, Part.Accel. 51, 43 (1995)

• Dipole moments on the synchrotron phase space, J,ϕ .

$$x_{ij} = x(J_i, \phi_j) \qquad p_{ij} = p(J_i, \phi_j) \qquad \psi_i = \psi(J_i, \phi_j)$$

$$J_i = i\Delta J$$
 $\phi_j = 2\pi\nu_s j$ $z_{ij} = \sqrt{2\beta_z J_i}\cos\phi_j$

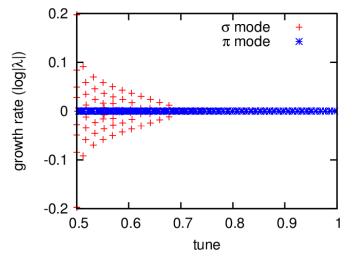
Synchrotron motion $j \rightarrow j + 1_{\circ} \ 1/\nu_s = n_s$

• Revolution of the dipole moments

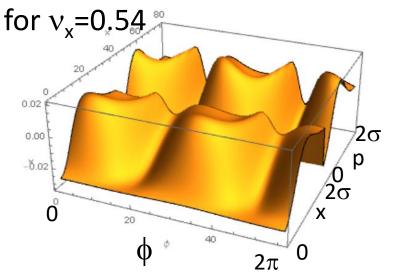
$$\begin{pmatrix} x_{ij} \\ p_{ij} \end{pmatrix} = \sum_{j'=1}^{n_s} M_{ij,ij'} \begin{pmatrix} x_{ij'} \\ p_{ij'} \end{pmatrix} = \sum_{j'=1}^{n_s} \begin{pmatrix} \cos \mu_x & \sin \mu_x \\ -\sin \mu_x & \cos \mu_x \end{pmatrix} \delta_{j-1,j'} \begin{pmatrix} x_{ij'} \\ p_{ij'} \end{pmatrix}$$

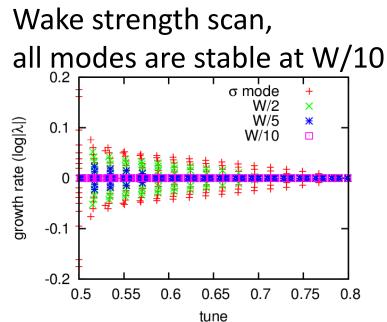
Wake force

$$\begin{pmatrix} x_{ij} \\ p_{ij} \end{pmatrix} = \sum_{i'j'} W_{ij,ij'} \begin{pmatrix} x_{i'j'} \\ p_{i'j'} \end{pmatrix} = \sum_{i'j'=1} \begin{pmatrix} 1 & 0 \\ -W(z_{ij} - z_{i'j'})\psi_{i'} & 1 \end{pmatrix} \begin{pmatrix} x_{i'j'} \\ p_{i'j'} \end{pmatrix}$$


Solve eigenvalue problem

$$M_W = \begin{pmatrix} \delta_{i,i'}\delta_{j,j'+1} & 0\\ -\beta_x W(z_{i,j} - z_{i',j'+1})\psi_{i'}\Delta J\Delta\phi & \delta_{i,i'}\delta_{j,j'+1} \end{pmatrix} \begin{pmatrix} \cos\mu_x & \sin\mu_x\\ -\sin\mu_x & \cos\mu_x \end{pmatrix}$$


Real matrix, 2xn_Jxn_s


Eigenvalues and eigenvectors

 σ/π modes, all π modes are stable

Eigenvector with largest growth

- σ modes are unstable at v=0.5+v_s.
- All π modes are stable.
- Threshold exists for strength of the wake.
- Everything is consistent with the single beam simulation
- π modes are unstable in pp collision.

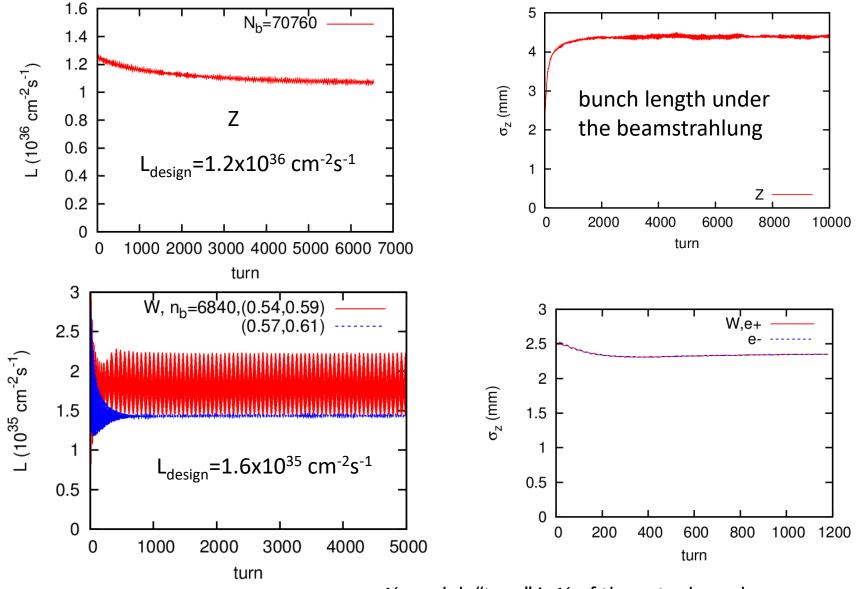
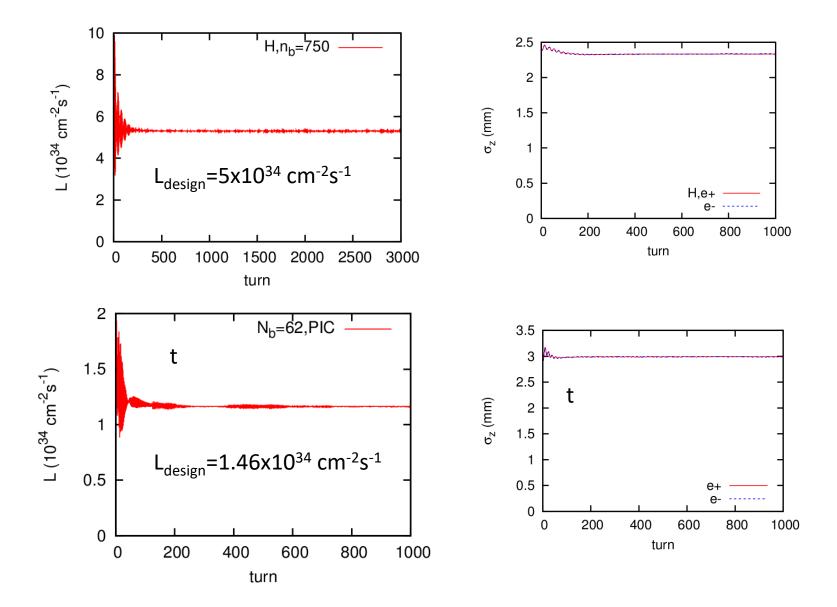

Beam-beam simulations using the latest parameters

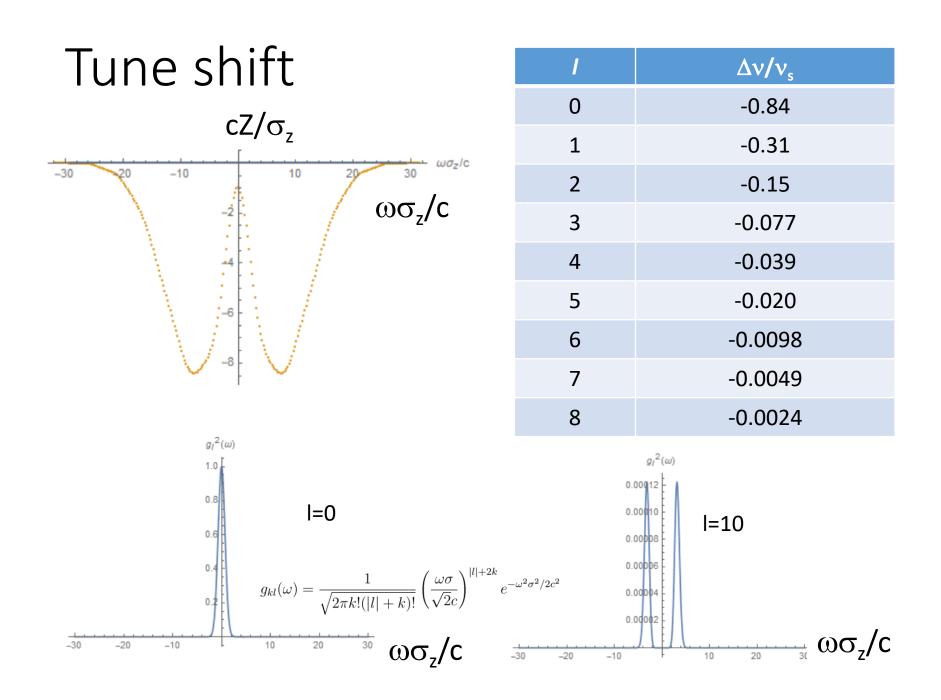
Table 1: FCC-ee baseline parameters.

<i>ب</i>	Z ₊³	W ₂	H₽	tt ~		
Circumference [km].	97.750.					
Bending radius [km].	10.747.					
Beam energy [GeV].	45.6₊	80₽	120 _°	175 _°		
Beam current [mA].	1399 ₄	147 <i>_e</i>	29₊	6.4		
Bunches / beam.	71200.	7500₊	740₊	62₊		
Bunch spacing [ns].	2.5 and 5.0.	40↩	400 ₽	5000 _°		
Bunch population [10 ¹¹].	0.4.	0.4.	0.8	2.11		
Horizontal emittance ϵ [nm].	0.267.	0.26	0.61.	1.33.		
Vertical emittance ϵ [pm].	1.0~	1.0~	1.2	2.66		
Momentum comp. [10 ⁻⁶],	14.79 .	7.31.	7.31.	7.31.		
Arc sextupole families.	208₊	292₽	292₽	292 .		
Betatron function at IP .	له	لي	له	ų		
- Horizontal β* [m].	0.15	1.	1.	1.		
- Vertical β* [mm]₊	1.	2.₽	2⊷	2.		
Energy spread [%].	له	له	لي	له		
- Synchrotron radiation	0.038⊷	0.066	0.10	0.145⊷		
- Total (including BS).	0.064.	0.074.	0.11.	0.169.		
Bunch length [mm].	ب	له	له	له		
- Synchrotron radiation	2.1⊷	2.0⊷	2.0⊷	2.38⊬		
- Total	3.6₽	2.3∉	2.3₽	2.77₽		
Energy loss / turn [GeV].	0.0356	0.34	1.71	7.72.		
Luminosity/IP for 2IPs [10 ³⁴ cm ⁻² s ⁻¹].	158.	16.4.	5.0₽	1.46		
Beam-beam parameter₀	به ا	L.	له	له		
- Horizontal	0.010	0.08.	0.09	0.09		
- Vertical.	0.118	0.13	0.14.	0.14		


Design			20	17		
Circumference	[km]	97.750				KOida Nav 24
Arc quadrupole scheme		twin aperture				K Oide, May 24
Bend. radius of arc dipole	[km]	10.747				
Number of IPs / ring	[]	2				
Crossing angle at IP	[mrad]	30				
Solenoid field at IP	[T]	±2				
l.*	[m]	2.2				
Local chrom. correction	[]	y-plane with crab-sext. effect				
RF frequency	[MHz]	400				
Total SR power	[MW]	100				
Beam energy	[GeV]	45.6	80	120	175	
SR energy loss/turn	[GeV]	0.036	0.34	1.72	7.80	
Long. damping time	[ms]	414	76.8	22.9	7.49	
Current/beam	[mA]	1390	147	29.0	6.4	
Bunches/ring		70760	6840(3860)	750 (560)	62	
Particles/bunch	$[10^{10}]$	4.0	4.4 (7.8)	7.9 (10.5)	21.1	
Arc cell		60°/60° 90°/90°				
Mom. compaction α_p	$[10^{-6}]$	14.79	14.79 7.31			
Horizontal tune ν_x		269.14	269.14 389.08			
Vertical tune ν_y		267.22	267.22 389.18			
Arc sext. families		208	292			
Horizontal emittance ε_x	[nm]	0.267	0.28	0.63	1.34	
$\varepsilon_y/\varepsilon_x$ at collision	[%]	0.38	0.36	0.2	0.2	
β_x^*	[m]	0.15	1 (0.5)		1	
β_y^*	[mm]	1	2 (1)		2	
Energy spread by SR	[%]	0.038	0.066	0.099	0.147	
Energy spread SR+BS	[%]	0.083	0.078(0.109)	0.114(0.140)	0.193	
RF Voltage	[MV]	255	696	2620	9500	
Bunch length by SR	[mm]	2.1	2.1	2.0	2.4	
Bunch length SR+BS	[mm]	4.6	2.5(3.5)	2.3(2.8)	3.2	
Synchrotron tune ν_z		-0.0413	-0.0340	-0.0499	-0.0684	
RF bucket height	[%]	3.8	3.7	2.2	10.3	
Luminosity/IP	$[10^{34}/cm^2s]$	121	16.4(30.0)	4.4(7.9)	1.32	

Strong-strong simulation for FCCee-Z & W

• ¹/₂ model, "turn" is ¹/₂ of the actual number


Strong-strong simulation for FCCee-H & t

Summary

- Strong-strong beam-beam simulations showed a coherent beam-beam instability in head-tail mode.
- The instability was serious in collision with a large crossing (Piwinski) angle.
- FCC parameters were revised to suppress the instability. Now the parameters for Z-t work well.
- The instability is explained by a wake force for correlation between two beams.
- It is important that the wake is localized.
- Theory with mode analysis was completed to explain this instability .

Thank you for your attention

Fourier expansion of the dipole moments

 $x(J,\phi) = \sum_{l=-\infty}^{\infty} x_l(J)e^{il\phi} \qquad p(J,\phi) = \sum_{l=-\infty}^{\infty} p_l(J)e^{il\phi}$

- Revolution $\begin{pmatrix} x_l \\ p_l \end{pmatrix} = e^{2\pi i l \nu_s} \begin{pmatrix} \cos \mu_x & \sin \mu_x \\ -\sin \mu_x & \cos \mu_x \end{pmatrix} \begin{pmatrix} x_l \\ p_l \end{pmatrix}$
- Wake force $\Delta p_l(J) = -\frac{1}{2\pi} \sum_{l'} \int dJ' W_{ll'}(J,J') x_{l'}(J') \psi(J')$

$$W_{ll'}(J,J') = \int \int d\phi d\phi' e^{-il\phi + il'\phi'} W(z-z')$$

= $2\pi i^{l'-l-1} \omega_0 \sum_{p=-\infty}^{\infty} Z(\omega) J_l\left(\frac{\omega' r}{c}\right) J_{i'}\left(\frac{\omega' r'}{c}\right)$

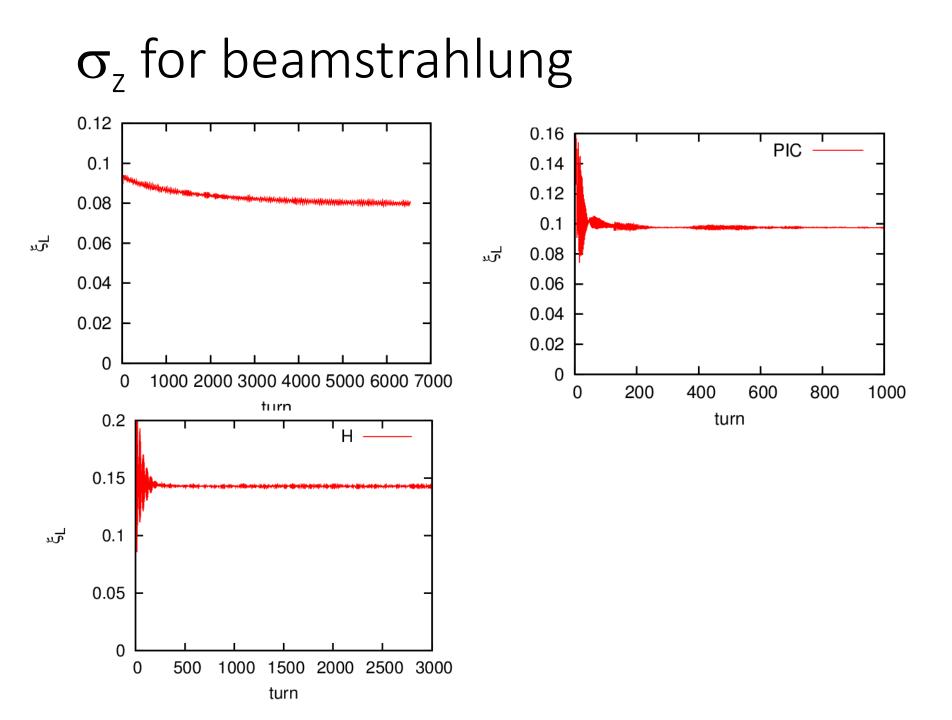
• Eigenvalue problem

$$M_W = e^{2\pi i l \nu_s} \begin{pmatrix} 1 & 0 \\ -\beta_x W_{ll'}(J_i, J_{i'}) \psi_{i'} \Delta J_{i'}/2\pi & 1 \end{pmatrix} \begin{pmatrix} \cos \mu_x & \sin \mu_x \\ -\sin \mu_x & \cos \mu_x \end{pmatrix}$$

Laguerre expansion for the radial modes

$$x_l(J) = \sum_k x_{kl} \sqrt{\frac{k!}{(|l|+k)!}} \hat{J}^{|l|/2} L_k^{(|l|)}(\hat{J})$$

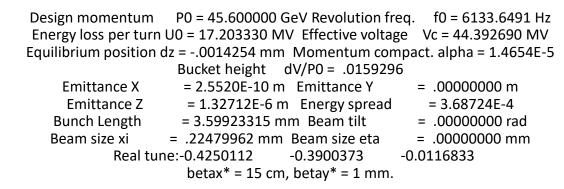
• Wake force

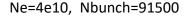

$$\Delta p_{kl} = -\sum_{k'l'} x_{k'l'} i^{l-l'-1} \omega_0 \sum_{p=-\infty}^{\infty} Z_1(\omega) g_{kl}(\omega') g_{k'l'}(\omega')$$
$$g_{kl}(\omega') = \sqrt{\frac{1}{2\pi k! (|l|+k)!}} \left(\frac{\omega'\sigma}{\sqrt{2}c}\right)^{2k+|\ell|} \exp\left(-\frac{\omega'^2\sigma^2}{2c^2}\right)$$

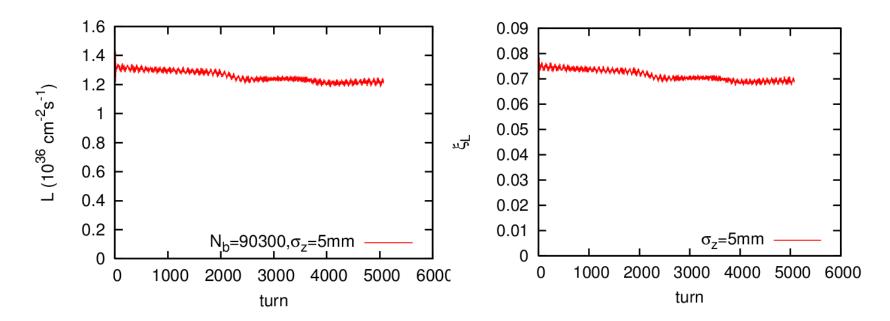
• Eigen value problem

$$M_W = e^{2\pi i l \nu_s} \begin{pmatrix} 1 & 0 \\ -2M_{klk'l'} & 1 \end{pmatrix} \begin{pmatrix} \cos \mu_x & \sin \mu_x \\ -\sin \mu_x & \cos \mu_x \end{pmatrix}$$
$$M_{k\ell,k'\ell'} = \frac{1}{2} \beta_x i^{l-l'-1} \omega_0 \sum_{p=-\infty}^{\infty} Z(\omega') g_{kl}(\omega') g_{k'l'}(\omega')$$

- $\Delta v = K/4\pi$ gives usual dispersion relation, K=M₂₁.
- Luguerre expansion is not goof for high frequency wake/impedance, $\omega\sigma_z/c>>1$


- Strong-strong beam-beam simulation
- Single beam simulation using multi-turn wake
- Two beam simulation using two beam wake
- Single beam simulation using two beam wake, σ or π modes.
- They gave similar results.




Luminosity for 60 degree lattice of FCC-ee-Z

K. Ohmi, May. 25, 2017

Parameters given by K. Oide (Feb. 17)

