Introduction	Theory	Compact ERL	ERL light source

Transverse beam breakup simulation for compact and Multi-GeV ERLs

CHEN, Si

加速器第六研究系

October 22, 2014

4 ロ ト 4 日 ト 4 王 ト 4 王 ト 王 今 Q (や 1/48

Introduction	Theory	Compact ERL	ERL light source	Summary
Outline				

Introduction of the ERL project at Peking University

Theory and simulation code of ERL BBU

BBU simulation for compact ERL with 9-cell TESLA-type cavities $% \left({{\rm TESLA-type}} \right)$

BBU simulation for a multi-GeV ERL light source

Summary

Introduction	Theory	Compact ERL	ERL light source	Summary
Abstract				

In energy recovery linacs (ERLs), the transverse beam break-up (BBU) due to the HOMs of RF cavities may limit their capability of running at higher beam current. It is important to determine the BBU threshold via simulations while designing the ERLs. At Peking University, a compact ERL test facility is under construction, which will use two 9-cell TESLA-type RF cavities in the main linac. The BBU effect was simulated for the PKU-ERL test facility and the possibility of using 9-cell TESLA-type cavity on such a compact ERL was proved. At KEK, a multi-GeV ERL based synchrotron light source, extendable to a XFEL-O, is under design. The designed average current for the multi-GeV ERL is up to 100mA. The BBU effects were simulated with various design schemes. In this talk, I will briefly overview the progress of the compact ERL at PKU and the BBU theories and simulations codes. The BBU simulations for the compact ERL at PKU and the multi-GeV ERL at KEK will be presented as well.

Introduction of the ERL project at Peking University

Theory and simulation code of ERL BBU

BBU simulation for compact ERL with 9-cell TESLA-type cavities

《曰》 《聞》 《臣》 《臣》 三臣

200

BBU simulation for a multi-GeV ERL light source

Summary

Introduction	Theory	Compact ERL	ERL light source	Summary
Energy Recover	y Linace			

Energy Recovery Linacs

Benfities

- ► Saving RF-power: High current.
- ▶ Good beam quality: not limited by the machine
- ▶ Reduce the energy dispose on the dump

Applications

Next generation light

source; \Rightarrow

- ▶ High power FEL and THz radiation source;
- ▶ other applications.

Introduction	Theory	Compact ERL	ERL light source	Summary
ERLs all over	the World			

Existed and Existing ERLs

- ▶ 1965, proposed by M. Tigner.
- \blacktriangleright Realized by several laboratories during 1970s and 1980s as experiments.
- ▶ JLab(IR-FEL Demo@1998¹, IR-FEL Upgrade@2004², JLAMP@2012³, CEBAF@2003⁴), JAERI(2001)⁵, BINP(2004)⁶, Daresbury(ALICE@2010)⁷, ERL facilities after 1990s

Left: JLAMP@JLab; Right: ALICE@Daresbury

- 1. Benson, S., et al., NIM A, 429(1):27-32, 1999. 2. Neil, G., et al., NIM A, 557(1):9-15, 2006.
- 3. Douglas, G., et al., Proceedings of IPAC2012. 4. Bogacz, A., et al., Proceedings of PAC2003.
- 5. Hajima, R., et al., Proceedings of PAC2001. 6. Bolotin, V.P., et al., BINP-tech report, 2004.
- 7. Jackson, F., et al., Proceedings of IPAC2011.

Introduction	Theory	Compact ERL	ERL light source	Summary
				(

ERLs all over the World

ERLs under construction or under design.¹

1. Nakamura, N., Proceedings of IPAC2012

Introduction	Theory	Compact ERL	ERL light source	Summary
The ERL pr	oject at Pekin	g University		

PKU-ETF: Peking University ERL Test Facility

- ▶ First ERL project proposed in China.
- ► Superconducting accelerator technology; FEL/THz/ICS research; Other related technologies.

Two stages

- \blacktriangleright First stage: DC-SRF injector with THz beamline.
- ► Second stage: Energy recovery linac based on the DC-SRF injector.

Introduction	Theory	Compact ERL	ERL light source	Summary
The ERL proje Parameters	ect at Pekin and lattice d	g University lesign		
	1) Optics for ARC1 One of th	the ERL Test Facility	DC-SRF Injector dule w ARC2 Wiggler TPKU-ETF ¹	

- ► DC-SRF injector; 2×9-cell TESLA-type cavities; Beamline; Undulator; etc.
- \blacktriangleright Macro pulse mode.

Energy	Bunch charge	Emittance	Bunch length
30MeV	$60 \mathrm{pC}$	$4 \mu \mathrm{m}$	4ps
Energy spread	rep. rate	pulse rep. rate	pulse length
0.32% (FWHM)	81.25/26 MHz	10Hz	$2\mathrm{ms}$

1. Huang, S., et al., Proceedings of ERL2011

Introduction	Theory	Compact ERL	ERL light source	Summary

The ERL project at Peking University

A key component: DC-SRF photoinjector¹

- ➤ Combination of a DC pierce gun and a 3.5-cell superconducting cavity.
- ▶ Two working modes
 - Marco pulse or continue wave mode for ERL.
 - Bunch compressor mode for coherent THz radiation.
- ▶ Now the THz mode is under commissioning². Stable electron beam has been generated.
- 1. Zhu, F., et al., Proceedings of SRF2011 2. Liu, K., et al., Proceedings of SRF2013

The ERL project at Peking University

A THz radiation source based on the DC-SRF photoinjector 1

- DC-SRF photoinjector(including the photocathode);
 Driving-Laser; Solid state microwave source;
- ▶ Beamline(Solenoid & Beam diagnostics); 10-period Wiggler; Beam dump; etc.
- \blacktriangleright LLRF control system & Control system based on EPICS.³

Thanks Feng Liwen for providing the pictures.
 Wang, F., et al., arXiv.1405.1238

The ERL project at Peking University

upper left: The first 2K cryogenic system in China; upper right: Bruker Far Infra-red Spectrograph; bottom: PKU people and visitors in the control room.^{1,2,3}

12/48

Introduction of the ERL project at Peking University

Theory and simulation code of ERL BBU

BBU simulation for compact ERL with 9-cell TESLA-type cavities

《曰》 《聞》 《臣》 《臣》 三臣

200

BBU simulation for a multi-GeV ERL light source

Summary

Introduction	Theory	Compact ERL	ERL light source	Summary
HOM DDII :	n FDI a			

- Positive feedback process between recoverying beam and HOMs in superconducting cavities.
- Limit the maximum beam current of ERL.
- ▶ 1977, first observed on the SCA at Stanford.
- ▶ 1986, SCA operates on ERL model. 2004, observed on the IR-FEL

2004, observed on the IR-FEL upgrade at JLab. 2007, JLab, CEBAF.

► Theorytical research by SLAC, JLab, Cornell Univ., etc..

Introduction	Theory	Compact ERL	ERL light source	Summary
BBU theory -	- Time Domain:	Energy conservat	tion	

E. Pozdeyev, Phys.Rev.ST AB. 8, 074401 (2005).

Assumptions: Single HOM in single cavity; twice pass through linac; Energy loss negelected in two passes.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 りへの

15/48

• Not suitable for $R_{12}^* \sin \omega t_r \ge 0$.

Introduction	Theory	Compact ERL	ERL light source	Summary

BBU theory - Time Domain

Comparison of analytical formula with simulation code

- \blacktriangleright Analytical formula agrees well with simulation when $R_{12}^*\sin\omega t_r < 0.$
- When $R_{12}^* \sin \omega t_r \ge 0$, BBU threshold current is relatively high.

Introduction	Theory	Compact ERL	ERL light source	Summary
BBU theory -	- Frequency	Domain		

G. Hoffstaetter & I. Bazarov, Phys.Rev.ST AB. 7,054401 (2004).

Dispersion relation - A more general BBU threshold current formula.

$$\begin{split} \frac{1}{I_0} &= \frac{\mathcal{K}\left(e^{\frac{\omega_\lambda t_b}{2Q_\lambda}}e^{-i\Omega t_b}\right)\sin(\omega_\lambda t_b)}{1-2\left(e^{\frac{\omega_\lambda t_b}{2Q_\lambda}}e^{-i\Omega t_b}\right)\cos(\omega_\lambda t_b) + \left(e^{\frac{\omega_\lambda t_b}{2Q_\lambda}}e^{-i\Omega t_b}\right)^2}\frac{1}{e^{-i\Omega t_r}}\\ \text{where} \\ &\mathcal{K} \equiv \frac{t_b(R_d/Q_0)_\lambda k_\lambda \omega_\lambda R_{12}}{2Q_\lambda} \end{split}$$

 $2V_{\rm b}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 りへの

17/48

• The smallest positive value of I_0 to make $Im(\Omega) = 0$ is the threshold current.

Introduction	Theory	Compact ERL	ERL light source	Summary
BBU simulati	ion codes			

For real cases, simulation codes required.

Two main algorithms:

- \blacktriangleright Tracking (Time domain): TDBBU, ERLBBU, BBU-R, bi
- \blacktriangleright Eigenvalue solution (Freq. domin): MATBBU, BMAD

Main approximations

- The kick effect of HOMs treats as thin lens;
- ▶ Point charge;

- Energy change negelected between two passes;
- ▶ Linear beam transportation.

Introduction	Theory	Compact ERL	ERL light source	Summary

BBU simulation codes

Name	TDBBU	ERLBBU	MATBBU	BBU-R	bi	Bmad
Developer	JLab	JLab	JLab	JAERI	Cornell	Cornell
Method	track	track	eigenvalue	track	track	eigenvalue
T/L	Т	Т	Т	Т	T/L	Т
Dimensional	1D	2D	1D	1D	1D	1D
Polarization	X/Y	arbitray	X/Y	X/Y	arbitray	arbitray
Topology	arbitray	2	2	2	arbitray	2
Language	$\mathbf{Fortran}/\mathbf{C}$	C++/java	С	С	C++	Fortran

Comparison of BBU simulation codes

- \blacktriangleright Simulation results meet well with the experiment at JLab ERL-FEL1
- ► Here, the bi code, which was developed by I. Bazarov of Cornell Univ.,² is used.
- 1. Tennant C.D., Ph. D. Dessertion, 2006
- 2. bi, http://www.lepp.cornell.edu/ ib38/bbu/

Introduction of the ERL project at Peking University

Theory and simulation code of ERL BBU

BBU simulation for compact ERL with 9-cell TESLA-type cavities $% \left({{{\rm{TESLA-type}}} \right)$

《曰》 《聞》 《臣》 《臣》 三臣

200

BBU simulation for a multi-GeV ERL light source

Summary

Introduct	ion	Theory	Compa	act ERL	ERL light source	Summary
0 11	TRAT !	•	0 D 1 .	TT .		

9-cell TESLA-type cavity@Peking University

- \blacktriangleright Relatively mature in shape design and manufacture technology.
- ▶ High R/Q and Q_0 value, high accelerating efficiency

Peking University has a lot of experiences on the manufacturing of 9-cell TESLA-type cavities.

- ► The first 9-cell TESLA-type cavity in China¹;
- ► The first 9-cell TESLA-type cavity to meet the basic requirement of ILC in China.
- Lu, X.Y., et al., Chinese Physics Letter, 25(11) 3934(2008)

Introduction Theory Compact ERL ERL light source Summary

High-Order-Modes in TESLA-type cavity

► Several dipole HOMs with large value of R/Q and Q_L exist in 9-cell TESLA-type cavity.

Dipole HOMs with the largest value of $(R/Q)Q_L/f$ in TESLA-type cavity^{1,2}

f	Q_{e}	R_d/Q_0	$(R/Q)Q_e/f$	Type
[GHz]		$[\Omega/\mathrm{cm}^2]$	$[\Omega/\mathrm{cm}^2/\mathrm{GHz}]$	
1.7074	5×10^{4}	11.21	3.28×10^{5}	TE_{111}
1.7343	2×10^{4}	15.51	1.79×10^{5}	TE_{111}
1.8687	5×10^{4}	6.54	1.75×10^{5}	TM_{110}
1.8738	$7{ imes}10^4$	8.69	3.25×10^{5}	TM_{110}
1.8799	1×10^{5}	1.72	9.15×10^{4}	TM_{110}
2.5751	$5{ imes}10^4$	23.80	4.62×10^{5}	TE_{121}

Question:

Can 9-cell TESLA-type cavity be used on compact ERLs like the PKU-ERL Test Facility?

1. TESLA TDR

2. Luo, X., et al., unpublished

Introduction	Theory	Compact ERL	ERL light source	Summary
BBU simulati	on – Modeli	ng		

Main parameters for simulation

- \blacktriangleright HOM parameters $(f,R/Q,Q_L,\theta)$
- Beam parameters (f_b, E_{inj})
- ▶ Beamline parameters (Transport matrix, Recirculating time (length of beamline))

HOM parameters

- Each HOM has two polarization directions: $x(0^\circ)$ and $y(90^\circ)$.
- \blacktriangleright HOMs affact individually to the beam.

BBU simulation – Modeling	

Beamline parameters

- \blacktriangleright Linear transfer matrix
- Transverse focusing effect included in cavity matrix Rosenzweig-Serafini's form:

Rosenzweig-Serafini's form of the transfer matrix of a pure π mode cavity

$$\begin{bmatrix} \cos\alpha - \sqrt{2}\cos(\Delta\phi)\sin\alpha & \sqrt{8}\frac{\gamma_{i}}{\gamma'}\cos(\Delta\phi)\sin\alpha \\ -\frac{\gamma'}{\gamma_{f}}\left(\frac{\cos(\Delta\phi)}{\sqrt{2}} + \frac{1}{\sqrt{8}\cos(\Delta\phi)}\right)\sin\alpha & \frac{\gamma_{i}}{\gamma_{f}}(\cos\alpha + \sqrt{2}\cos(\Delta\phi)\sin\alpha) \end{bmatrix}$$
(1)

- ▶ x-y phase space no coupling: $R_{14} = R_{23} = 0$
- 1. Rosenzweig, G., Serafini, L., Phys. Rev. E., 49(2):1599,1994

<ロ><日><日><日><日><日><日><日><日><日><日><日><日><10</p>

Introduction	Theory	Compact ERL	ERL light source	Summary
				(

BBU threshold current VS. Betatron phase advance

For x-polarized HOM: $R_{12}^* = R_{12}$

$$R_{12}(i \to f) = \gamma_i \sqrt{\frac{\beta_i \beta_f}{\gamma_i \gamma_f}} \sin \Delta \psi \approx p_i \sqrt{\frac{\beta_i \beta_f}{p_i p_f}} \sin \Delta \psi$$

 \blacktriangleright Maximum I_{th} about 330mA and minimum about 24mA.

Introduction Theory Compact ERL ERL light source Summa

The most threatening HOM in TESLA-type cavity

BBU threshold current when each HOM acts individually to the beam

- Most threatening HOMs in 9-cell TESLA-type cavity $1.7074GHz(TE_{111}), 1.8738GHz(TM_{110}), 2.5751GHz(TE_{121})$
- 26/48

Introduction	Theory	Compact ERL	ERL light source	Sum

The most threatening HOM in TESLA-type cavity

- ► $\Delta \psi = 0$, $I_{th} \approx 30 \text{mA}$, $I_0 = 33 \text{mA}$, $t_{on} = 100 \mu \text{s}$.
- ► x offset VS. time ↓FFT Frequency spectrum evolution VS. time

e¹ 10⁻¹ 10⁻²⁰ 10

• TE_{121} – like mode determines the BBU at last.

Introduction	Theory	Compact ERL	ERL light source	Summary

Influence of inhomogeneous HOMs

- ► Inhomogeneous of cavity shape during farbication leads to HOM spread between different cavities.¹
- ► HOM frequency spread disturbs the phase between bunch and HOMs
- ▶ 1000 random seed of HOM frequency (Gaussian distribution)

28/48

Introduction	Theory	Compact ERL	ERL light source	Summary
				(

Influence of inhomogeneous HOMs

- σ_{f} : 0MHz-10MHz, 1000 Gasussian random seed of frequency at each σ_{f} .
- Average BBU threshold value increases with the $\sigma_{\rm f}$ increases.
- Changes slower after $\sigma_{\rm f} > 6 {\rm MHz}$

▶ Due to the limited cavity number, large fluctuations of the threshold currents.

Introduction	Theory	Compact ERL	ERL light source	Summary

BBU threshold with different cavity numbers

- Higher energy requires more cavities.
- ► Same gradient; Same E_{inj}; Same t_r; Single module.

- ▶ 8×9-cell TESLA-type cavity: $I_{th,max} \approx 35 \text{mA}$, $I_{th,min} \approx 7 \text{mA}$.
- ▶ BBU threshold current drops clearly with the cavity number increases.

Introduction	Theory	Compact ERL	ERL light source	Summary
BBU superssion	methods			

- \blacktriangleright Improve HOM damping ability High current superconducting cavities
 - $\blacktriangleright\,$ 9-cell KEK-ERL cavity; 7-cell Cornell cavity; 7-cell CEBAF cavity; 5-cell BNL cavity.....etc. 1
- ► Improve the beam energy (Injection energy and accelerating gradient to reduce cavity number)
- \blacktriangleright Beam optics methods
 - ► Adjusting the betatron phase advance or the return loop length.
 - ► Inducing transverse phase space coupling: Rotation/Reflection.
- ▶ Beam-based feedback.

Introduction	Theory	Compact ERL	ERL light source	Summary
BBU superssion	methods - E	Beam optics metho	ods	

Betatron phase advance adjusting

- ▶ Point-to-Point focusing: Adjusting betatron phase advance without influence the phase space match.
- ▶ JLab method: Phase Trombone^{1,2}

$$\begin{split} \frac{\Delta\beta_{n}}{\beta_{o}^{n}} &= \mp \sum_{k=1}^{N} P_{k}\beta_{k}^{n} \sin(2(\psi_{o}^{n} - \psi_{k}^{n})) \\ \Delta\alpha_{n} &= \pm \sum_{k=1}^{N} P_{k}\beta_{k}^{n} (\cos(2(\psi_{o}^{n} - \psi_{k}^{n})) - \alpha_{o} \sin(2(\psi_{o}^{n} - \psi_{k}^{n}))) \\ \Delta\psi_{n} &= \pm \frac{1}{2\pi} \sum_{k=1}^{N} P_{k}\beta_{k}^{n} \sin^{2}((\psi_{o}^{n} - \psi_{k}^{n})) \end{split}$$

- 1. Douglas, D., Proceedings of PAC1991
- 2. Douglas, D., JLAB-TN-04-017, 2004

Introduction	Theory	Compact ERL	ERL light source	Summary

BBU superssion methods - Beam optics methods

- ► Efficiency of transverse phase space coupling.
- ► 8×9-cell TESLA-type cavity in a single cryomodule.

- ► BBU threshold current improves significantly. $I_{th}^{(norm)} < I_{th}^{(ref)} < I_{th}^{(rot)}$ (with same $\Delta \psi$)
- ▶ Limitation: Sometimes transverse phase space coupling should be avoid.

Introduction of the ERL project at Peking University

Theory and simulation code of ERL BBU

BBU simulation for compact ERL with 9-cell TESLA-type cavities

《曰》 《聞》 《臣》 《臣》 三臣

200

BBU simulation for a multi-GeV ERL light source

Summary

BBU of ERL light source

ERL light source, BBU is much complex than compact ERLs

- ▶ Higher beam energy: MeV \rightarrow GeV \Rightarrow Much more cavities.
- \blacktriangleright Average current up to 100mA \Rightarrow Stronger beam-HOM interaction.

KEK 3-GeV ERL light source—PEARL

- \blacktriangleright 3-3.5 GeV ERL light source & 6-7 GeV XFEL-O
- ▶ BBU simulation for 5-GeV ERL design carried out in 2007¹.
- ▶ In the preliminary design report, preciesely simulation of the new design is not included.

◆□ > ◆□ > ◆豆 > ◆豆 > ・ 亘 ・ 少へ⊙

BBU simulation for 3-GeV ERL

- ▶ 2 different ERL designs: 3.0-GeV (470m-linac); 3.4-GeV $(630m-linac)^3$
- ▶ 9-cell KEK-ERL mode-2 superconducting cavity used.
- 1. Hajima, R. Proceedings of ERL2007
- 2. ERL preliminary design report(2012)
- 3. Lattice file provided by Miho Shimada

Introduction	Theory	Compa	ct ERL	ERL light source	Summary
9-cell KEK-H	ERL mod	le-2 cavity			
	HO	000)00=	
		9-cell KEK-I	ERL mode-2 o	cavity	
	main H	OMs in 9-cell	KEK-ERL	mode-2 cavity ^{1} .	
	f	Q_{e}	R/Q	$(R/Q)Q_e \cdot f$	
	[GHz]		$[\Omega/\mathrm{cm}^2]$	$[\Omega/\mathrm{cm}^2/\mathrm{GHz}]$	
	1.835	1.1010×10^{3}	8.087	4852	

		[11/0111]	
1.835	1.1010×10^{3}	8.087	4852
1.856	1.6980×10^{3}	7.312	6691
2.428	1.6890×10^{3}	6.801	4732
3.002	2.9990×10^{4}	0.325	3246
4.011	1.1410×10^{4}	3.210	9135
4.330	6.0680×10^5	0.018	2522

- ▶ 2007, 5-GeV ERL design: $I_{th} \approx 600 \text{mA}^1$.
- 1. Sakai H., et al., Proceedings of ERL2007 1

Introduction

Theory

Compact ERL

ERL light source

$3.0\text{-}\mathrm{GeV}$ ERL design

- ► 28 modules×8 cavities, $E_{inj}=10 \text{MeV},$ $E_{acc}=13.4 \text{MV/m},$ $E_{full}=3.0 \text{GeV}.$
- ▶ β value at the end of linac is about 83m.

 $\begin{array}{l} \bullet \ \Delta\psi\in[0,2\pi],\\ I_{th,min}\approx\!\!240mA \ and\\ I_{th,max}\approx\!\!340mA. \end{array}$

Introduction

Theory

Compact ERL

ERL light source

3.4-GeV ERL design

- ► 34 modules×8 cavities, $E_{inj}=10 \text{MeV},$ $E_{acc}=12.5 \text{MV/m},$ $E_{full}=3.4 \text{GeV}.$
- ▶ β value at the end of linac is about 100m.

 $\begin{array}{l} \bullet \ \Delta\psi \in [0,2\pi], \\ I_{\rm th,min} \approx 220 {\rm mA}, \\ I_{\rm th,max} \approx 300 {\rm mA} \end{array}$

Introduction	Theory	Compact ERL	ERL light source	Summary
HOM from the	a are are made d			

HOM frequency spread

• 1000 random seeds with $\sigma_{\rm f} = 1 \rm MHz$

 $\sigma_{\rm f} = 1 {\rm MHz}$

 $\begin{array}{l} \bullet \ \overline{I_{\rm th}^{(1)}} \approx 640 {\rm mA} \ , \ \sigma_{\rm I}^{(1)} \approx 56 {\rm mA} \ , \ \sigma_{\rm I}^{(1)} / \bar{\rm I}_{\rm th}^{(1)} \approx 8.75\% \\ \bullet \ \overline{I_{\rm th}^{(2)}} \approx 530 {\rm mA} \ , \ \sigma_{\rm I}^{(1)} \approx 54.2 {\rm mA} \ , \ \sigma_{\rm I}^{(1)} / \bar{\rm I}_{\rm th}^{(1)} \approx 10.2\% \end{array}$

Introduction	Theory	Compact ERL	ERL light source	Summary

HOM frequency spread

• Average value of I_{th} VS. $\sigma_{\rm f}$

Introduction	Theory	Compact ERL	ERL light source	Summary
Return loop	length			

▶ In ERL, sometimes we need to adjust the length of return loop.

- ► The most threating mode: 4.011GHz.
- Quansi-periodic variation along with the path length variation when $\sigma_{\rm f} = 0$.
- ► when σ_f=1 MHz, periodic variation almost disappears.

Introduction	Theory	Compact ERL	ERL light source	Summary

Comparison of different ERL designs

	3.4-GeV ERL	3.0-GeV ERL	5.0-GeV ERL
$E_{inj}[MeV]$	10	10	10
$E_{full}[MeV]$	3410	3010	4970
Modules	34	28	31
$E_{\rm acc}[{\rm MV/m}]$	12.5	13.4	20
$I_{th,min}(\sigma_f=0)[mA]$	220	240	580
$I_{\rm th,average}(\sigma_{\rm f}{=}2{\rm MHz})[{\rm mA}]$	940	940	2.4e3

- ► Same cavity number; Different cavity gradient.
- $I_{\rm th} \propto E_{\rm acc}$.

Thanks Dr. M. Shimada for providing lattice files

Introduction Theo	y Compact ERL	ERL light source	Summary
-------------------	---------------	------------------	---------

Contribution of different cavity to BBU

The cavities at low energy section (the start and the end of the linac)

$$\frac{1}{I_{\rm th}} \propto \frac{\sqrt{\beta_1\beta_2}}{\sqrt{p_1p_2}} \sin \Delta \psi$$

4 ロ ト 4 日 ト 4 王 ト 4 王 ト 王 少へで 44/48 Introduction of the ERL project at Peking University

Theory and simulation code of ERL BBU

BBU simulation for compact ERL with 9-cell TESLA-type cavities

《曰》 《聞》 《臣》 《臣》 三臣

200

BBU simulation for a multi-GeV ERL light source

Summary

Introduction	Theory	Compact ERL	ERL light source	Summary
Summary				

BBU simulation for compact ERL with 9-cell TESLA-type cavities

- ▶ BBU threshold current of PKU-ETF is about 24mA, larger than the design average current.
- The most threatening mode in TESLA-type cavity is the TE_{121} -like mode with frequency about 2.57GHz.
- ▶ By applying beam optics methods, BBU threshold current can be improved significantly.

BBU simulation for multi-GeV ERL light source in KEK

- ▶ BBU threshold of both the two designs of KEK ERL light source is larger than the design value of average current.
- ▶ By improving the accelerating gradient, BBU threshold current can also be improved.

Introduction	Theory	Compact ERL	ERL light source	Summary
Acknowledge	ment			
Many tha	nks to:			
Peking U	niversity			
► Prof.	Jia-er Chen.	Prof. Kexin Liu, Pro	of. Baocheng Zhang.	Prof.

Prof. Jia-er Chen, Prof. Kexin Liu, Prof. Baocheng Zhang, Prof. Shengwen Quan, Dr. Jiankui Hao, Dr. Senlin Huang, Dr. Feng Zhu, Dr. Yongming Li, Dr. Liu Yang, Liwen Feng, Xiaodong Wen, Zhiwen Wang, Xing Luo, and other people in the SRF group of PKU.

KEK

▶ Prof. N. Nakamura, Prof. K. Ohmi, Dr. M. Shimada, Dr. Demin Zhou, and other people in KEK ERL group.

JAEA

▶ Prof. R. Hajima

Thank you!

◆□ > ◆母 > ◆臣 > ◆臣 > 善臣 - のへで