

High Energy e⁺e⁻ Factories (FCC-ee & CEPC)

Many thanks to J. Gao, H. Geng, Qing Qin, Dou Wang, Yiwei Wang, Yuan Zhang for providing materials of CEPC. Contributions for FCC-ee: M. Aiba, S. Aumon, M. Benedikt, A. Blondel, A. Bogomyagkov, M. Boscolo, H. Burkhardt, Y. Cai, A. Doblehammer, B. Haerer, B. Holzer, J.M. Jowett, I. Koop, M. Koratzinos, E. Levitchev, L. Medrano, S. Ogur, K. Ohmi, Y. Papaphilippou, P. Piminov, D. Shatilov, S. Sinyatkin, M. Sullivan, J. Wenninger, U. Wienands, D. Zhou, F. Zimmermann.

Future Circular Collider Study GOAL: CDR and cost review for the next ESU (2018)

International FCC collaboration (CERN as host lab) to study:

- *pp*-collider (*FCC-hh*)
 → main emphasis, defining infrastructure requirements
- ~16 T \Rightarrow 100 TeV *pp* in 100 km
- 80-100 km infrastructure in Geneva area
- e⁺e⁻ collider (FCC-ee) as potential intermediate step / as a possible first step
- *p-e* (*FCC-he*) option, HE-LHC ...

CEPC – Site Investigation A good example is 秦皇岛:

300 km from Beijing

3 hours by car; 1 hours by high speed train

CEPC-SPPC Review, Feb 14-16, 2015

possible physics requirements

A. Blondel, J. Ellis, C. Grojean, P. Janot

- physics programs / energies:
 - **Z (45.5 GeV) Z pole**, 'TeraZ' and high precision $M_Z \& \Gamma_Z$
 - **W (80 GeV) W pair production** threshold, high precision M_W
 - H (120 GeV) ZH production (maximum rate of H's)
 - t (175 GeV): tt threshold, H studies
- $\hfill\square$ beam energy range from 35 GeV to ≈ 200 GeV
- highest possible luminosities at all working points
- possibly H (63 GeV) direct s-channel production with monochromatization

(c.m. energy spread <6 MeV, presentation at IPAC'16)

□ beam polarization up to ≥80 GeV for beam energy calibration

luminosity trends of circular e⁺e⁻ colliders

Accelerator Design for Circular High-Energy e+e- Colliders Frank Zimmermann CREMLIN workshop 22 August 2016

CERN Circular Colliders & FCC

Now is the time to plan for the period 2035 – 2040

Future Circular Collider Study Michael Benedikt 2nd FCC Week, Rome, April 2016 FCC hh ee he

CDR Study Time Line

Future Circular Collider Study Michael Benedikt 2nd FCC Week, Rome, April 2016

CEPC-SPPC Timeline (preliminary)

2016 Parameters

parameter	FCC-ee				CEPC		LEP2
energy/beam [GeV]	45		120	175	45	120*	105
bunches/beam	91500	30180	770	78	1100	67	4
beam current [mA]	1450		30	6.6	45.4	16.9	3
energy loss/turn [GeV]	0.03		1.67	7.55	0.062	2.96	3.34
synchrotron power [MW]	100			2.8	100	22	
RF voltage [GV]	0.2	0.4	3.0	10	0.12	3.6	3.5
rms bunch length (SR,+BS)	1.6,	1.2,	2.0,	2.1,	3.9,	3.1,	12,
[mm]	3.8	6.7	2.4	2.5	4.0	4.1	12
rms emittance ε _{x,γ} [nm, pm]	0.1, 1	0.2, 1	0.6, 1	1.3, 2.5	0.62,2.8	2.45,7.4	22, 250
β [*] _{x,y} [m, mm]	1, 2	0.5, 1	1, 2	1, 2	0.1, 1	0.25, 1.4	1.5, 50
long. damping time [turns]	1320		72	23	726	41	31
crossing angle [mrad]	30			30		0	
beam lifetime [min]	185	94	67	57	79	20	434
luminosity/IP x 10 ³⁴ cm ⁻² s ⁻¹	70	207	5.1	1.3	3.6	2.96	0.0012

FCC-ee: 2 separate ring

CEPC: Partial double ring (PDR), 120*: high-lumi version

parameter for CEPC partial/full double ring

(wangdou20161123-100km)

Dou Wang

	Pre-CDR	W	Z Full double ring	
Number of IPs	2	2	2	2
Energy (GeV)	120	80	45.5	45.5
Circumference (km)	54	100	100	100
SR loss/turn (GeV)	3.1	0.33	0.034	0.034
Half crossing angle (mrad)	0	15	15	15
Piwinski angle	0	3.57	5.69	5.69
N_e /bunch (10 ¹¹)	3.79	1.05	0.46	0.46
Bunch number	50	1100	1100	65716
Beam current (mA)	16.6	55.7	24.3	1449.7
SR power /beam (MW)	51.7	18.3	0.84	50
Bending radius (km)	6.1	11	11	11
Momentum compaction (10 ⁻⁵)	3.4	3.1	3.3	3.3
$\beta_{IP} x/y (m)$	0.8/0.0012	0.1 /0.001	0.12/0.001	0.12/0.001
Emittance x/y (nm)	6.12/0.018	2.68/0.008	0.93/0.0049	0.93/0.0049
Transverse σ_{IP} (um)	69.97/0.15	16.4/0.09	10.5/0.07	10.5/0.07
$\xi_x/\xi_y/IP$	0.118/0.083	0.0082/0.055	0.0075/0.054	0.0075/0.054
RF Phase (degree)	153.0	149	160.8	160.8
$V_{RF}(\text{GV})$	6.87	0.63	0.11	0.11
f_{RF} (MHz)	650	650	650	650
<i>Nature</i> σ_{z} (mm)	2.14	3.8	3.93	3.93
Total σ_{z} (mm)	2.65	3.9	4.0	4.0
HOM power/cavity (kw)	3.6 (5cell)	1.1 (2cell)	0.11 (1cell)	6.25(1cell)
Energy spread (%)	0.13	0.065	0.037	0.037
Energy acceptance (%)	2			
Energy acceptance by RF (%)	6	1.5	1.1	1.1
n _γ	0.23	0.26	0.18	0.18
Life time due to beamstrahlung_cal (minute)	47			
F (hour glass)	0.68	0.84	0.91	0.91
L_{max} /IP (10 ³⁴ cm ⁻² s ⁻¹)	2.04	4.49	1.19	70.97

Strong-Strong beam-beam instability (FCC-ee @ Z)

- * x-z coherent instability is seen in early stage and beam size blow up.
- Residual x-z motion remains.
- Luminosity is reduced to 60% of the design.

- (FCC-ee)
- C = 100 km, fits to the FCC-hh tunnel and footprint as much as possible.
 2 IPs / ring.
- 30 mrad crossing angle at the IP with crab waist.
- Common lattice for all energies, except for the detector solenoid.
- \bullet ε_x ≤ 1.3 nm @ 175 GeV, basically scaling with energy.
- ±2% momentum acceptance at 175 GeV to hold the large energy spread caused by beamstrahlung.
- Vertical emittance less than 2.5 pm at 175 GeV before collision.
- * $\beta_{x,y}^* = (1 \text{ m}, 2 \text{ mm})$ at 175 GeV, (0.5 m, 1 mm) at 45.6 GeV as the baseline.
- Suppress the critical energy of the synchrotron radiation to the IP below 100 keV, up to 500 m upstream. No dipole magnets 100m upstream from the IP.
- * "tapering" to cure the sawtooth at high energy.

Phys. Rev. Accel. Beams 19, 111005 (2016)

CEPC for options for twoards CDR

Half Ring Optics

- Above are the half optics $\beta *_{x/y} = 1 \text{ m} / 2 \text{ mm}$.
- 2 IP/ring.
- The optics for straight sections except for the IR are tentative, to be customized for infection/extraction/collimation/beam instumentation, etc.

FCC-ee Interaction Region

- The optics in the interaction region are asymmetric.
- The synchrotron radiation from the upstream dipoles are below 100 keV up to 450 m from the IP.
- The crab sextuples are integrated in the local chromaticity correction system in the vertical plane.

Partial double ring FFS design with crab sextupoles

The second FFS sextupoles of the CCS-Y section work as the crab sextupoles.

Optics at the FCC-ee IP

175 GeV, $\beta^*_{x,y} = (1 \text{ m}, 2 \text{ mm})$

- The effect of detector solenoid field is locally compensated by counter solenoids.
- The solenoid field is shielded on the quadrupoles.
- If the compensation/shielding is perfect, their effects on the beam optics is minimal. No coupling, no vertical dispersion leak to the outside.

HOM trapping by the cavity structure at IP, FCC-ee

- HOM is trapped in the IP beam pipe, if all beam pipes are narrower than the IP, which needs to be larger that 40 mm (M. Sullivan).
- Heating, esp. at Z.
- Leak of HOM to the detector, through the thin Be beam pipe at the IP.

A solution: larger outgoing beam pipe & thinner final quads

- The most of HOM can escape to the outside through the outgoing beam pipe, which has a diameter not smaller than IP.
- L* depends on the design of the final quadrupole.

Asymmetric L* at the FCC-ee IP

- Even with the asymmetric L*, the optics, so as the chromaticity, look similar.
- The solenoid compensation is unchanged: locally compensated up to 2.2 m from the IP.
- Longer L* downstream has no merit on the luminometer.

The Arc Cell (FCC-ee)

- ✤ Basically a 90/90 degree FODO cell.
- The quadrupoles QF/QD are 3.5 m/1.8 m long, respectively, to reduce the synchrotron radiation.
 They also depends on the design of quads and the beam pipe (A. Milanese, F. Zimmermann).
- ✤ All sextupoles are paired with -*I* transformation.
- ✤ 292 sextupole pairs per half ring.

Non-interleave sextupoles in arc (CEPC) (90°/90° FODO)

- The usage of the straights on the both sides of the RF is to be determined.
- If the nominal strengths of quads are symmetrical in the common section, it matches to the optics of both beam.
- This section is compatible with the RF staging scenario. For lower energy, the common RF and cross
 over will not be necessary.

The Sawtooth & Tapering (FCC-ee @ 175 GeV)

- The change of the orbit due to energy loss along the arc causes serious deformation on the optics, causing the loss of the dynamic aperture.
- Everything can be cured almost completely by "tapering", i.e. scaling the strengths of all magnets along the local energy of the beam: this is one of the best merits of a double-ring collider (F. Zimmermann).

Dynamic Aperture satisfies the requirements (FCC-ee).

All effects in the next slide are included except for radiation fluctuation and beam-beam. Effects by the radiation fluctuation will be shown in the later slides.

Effects included in the dynamic aperture survey

Effects	Included?	Significance at $t\bar{t}$
Synchrotron motion	Yes	Essential
Radiation loss in dipoles	Yes	Essential – improves the
		aperture
Radiation loss in	Yes	Essential – reduces the
quadrupoles		aperture
Radiation fluctuation	Yes	Essential
Tapering	Yes	Essential
Crab waist	Yes	transverse aperture is
		reduced by $\sim 20\%$
Solenoids	Yes	minimal, if locally
		compensated
Maxwellian fringes	Yes	small
Kinematical terms	Yes	small
Beam-beam effects	Yes (D. Zhou)	affects the lifetime for
(strong-weak model)		$\beta_y^* = 1 \text{ mm}$
Higher order	No	Essential, development of
fields/errors/misalignments		correction/tuning scheme is
		necessary

Dynamic aperture optimization CEPC PDR, IR + ARC

- Dynamic aperture result
 - W/O error of the magnets
 - Synchrotron motion included, w/o damping
 - Tracking with around 1 times of damping time
 - Coupling factor κ =0.003 for ϵy
 - Working point (0.08, 0.22)
- Many cases of sextupole families tried
 - Downhill Simplex algorithm applied
 - Some typical results
 - Further optimization is possible
 - Further optimization with these families
 - More families in IR
 - βy*= 1mm -> 1.36mm
 - Larger dispersion for IR sextupoles

DA Optimization with arc sextupoles (CEPC, PDR)

192 sextupole families

Multi-Objective optimization by Differential Evolution

The parallel algorithm is referencing to J. Qiang(IPAC'13)

- 1. Initialize the population of parameter vectors
- 2. Generate the offspring population using the above differential evolution algorithm
- 3. Find the non-dominated population, which are treated as the best solutions in DE to generate offspring
- 4. Sorting all the population, select the best NP solution as the parents
- 5. Return to step 2, if stopping condition not met

Yuan Zhang

CEPC: Dynamic Aperture Optimization²⁰ single ring, Arc + IR, no pretzel³⁵

- DA Objective: $\frac{x^2}{20^2} + \frac{z^2}{16^2} = 1$
 - z for energy deviation in unit of σ_p
 - x for transverse amplitude in unit of σ
 - Variables: 240 sextupole familiy in arc
 - Sextupoles interleaved with –I map is one pair
 - Options:
 - DAPWIDTH=15
 - Turns = 100
 - Synchrotron oscillation on

DA almost satisfies the requirements

Yuan Zhang

DA STUDY AND OPTIMIZATION FOR PDR

by Yiwei Wang

- Dynamic aperture study
 - **Bare** lattice
 - Synchrotron motion included
 - w/o and w/ damping •
 - Tracking with around 1 times of damping time
 - Coupling factor κ =0.003 for ϵy
 - Working point (0.08, 0.22)
 - **Downhill Simplex** algorithm applied up to
 - Downhill Single

 96 families of sexts

 Achieved DA: 16σx/45σy@0.0% dp/p,~3σx/

 222.0%

 •
- Further optimization is possible
 - Larger dispersion for IR sextupoles
 - $\beta y^* = 1 \text{mm} \rightarrow 1.3 \text{mm}$ (new parameters)
 - More families in IR
- Study of effects such as quantum excitation, solenoid field, errors and misalignments are under going

Two important issues on single ring and partial double rings

2) Beam loading effects induced DA reduction

Several effects on the dynamic aperture

Synchrotron radiation in quadrupoles

 Horizontal betatron oscillation (left) causes a synchrotron motion (right) due to the energy loss by the synchrotron radiation in arc quadrupoles.

$$\Delta p = \frac{\Delta p_1}{2\pi\nu_s} \exp(-\alpha_z/4\nu_s) = \frac{\alpha_z}{\pi\nu_s J_z} R_{\rm Q} n^2 \varepsilon_x \exp(-\alpha_z/4\nu_s) ,$$
$$R_{\rm Q} = \frac{2\sqrt{2}}{\theta_c^2} \left(\frac{\sqrt{2}+1}{\ell_{\rm QF}} + \frac{\sqrt{2}-1}{\ell_{\rm QD}}\right) \quad (90^\circ \text{ FODO})$$

Such particles can not stay on momentum: reduction of the dynamic aperture.

CEPC (FEC

Synchrotron radiation in quadrupoles (cont'd)

 $E = 175 \text{ GeV}, \beta_{x,y} = (1 \text{ m}, 2 \text{ mm})$

- The dynamic aperture without radiation loss in quadrupoles (left) has a sharp peak at on momentum.
- The peak is destroyed if the radiation in quads is turned on (right).
- The parabolas on the left show the amplitude of the synchrotron motion due to the radiation in the quadrupole. For a given transverse amplitude, if the parabola is beyond the DA, the particle with that amplitude will be lost.

Less chromaticity \neq better dynamic aperture

 $\beta^*_{x,y} = (0.5 \text{ m}, 1 \text{ mm})$, no radiation damping

Effect of Radiation Fluctuation

$E = 175 \text{ GeV}, \beta_{x,y} = (1 \text{ m}, 2 \text{ mm})$

Radiation damping + fluctuation

• (Right figure) 100 samples are taken to evaluate the dynamic aperture with radiation fluctuation.

• Within the lines: particles survive for 75% of the samples.

Radiation damping only

- Error bars correspond to the range of survival between 50% and 100% of the samples.
- It may reasonable that the 50% loss corresponds to the original aperture.
- The thickness between 50% and 100% survival can be attributed to the fractal structure of unstable orbits or resonances in the phase space.

Effect of Radiation Fluctuation (2)

$E = 175 \text{ GeV}, \beta x, y = (0.5 \text{ m}, 1 \text{ mm})$

Radiation damping + fluctuation

- (Right figure) 100 samples are taken to evaluate the dynamic aperture with radiation fluctuation.
 - Within the lines: particles survive for 75% of the samples.

Radiation damping only

- Error bars correspond to the range of survival between 50% and 100% of the samples.
- The reduction of the 100% survival aperture is more significant than $\beta x, y = (2 \text{ m}, 2 \text{ mm})$. However, it still maintains $\pm 2\%$ momentum acceptance.

2. Simulations: SAD: ttpar

- > Luminosity for $\beta_x^*=0.5m$, $\beta_y^*=1mm$
 - Lattice ver. FCCee_t_65_26
 - Small gain from CW
 - Small loss(order of a few percents) due to BB+LN
 - Allow lower beam current to achieve the same lum.

Emittance Tuning – SuperKEKB

FCC-ee talks later: Emittance tuning: S. Aumon Tolerance/misalignment: S. Sinyatkin

Low Emittance Tuning Simulation

• Assumed machine errors

100

- All errors are static in time.
- Bearing KEKB alignment level in mind.
- All errors are Gaussian distributed.

Quadrupole tilt angle measurement at KEKB

Emittance Tuning – SuperKEKB (2)

Vertical Emittance 200 samples

• Vertical emittance is well below the target in both rings.

H. Sugimoto

Emittance Tuning – SuperKEKB (3)

- On-momentum DA is recovered.
- Off-momentum DA is not resumed.
- Need off-momentum optics correction. (under investigation)
 - Reoptimization strategy of sextupole is not trivial because it affects vertical emittance also.

H. Sugimoto

CEPC damping ring requirement

> Energy: 1.1GeV

Storage time: 20ms

> Injected emittance (normalized): 3500 mm-mrad, injected energy spread ~ 0.25%

Transverse acceptance > 3*injection beam size

Extracted energy spread <1×10-3</p>

> No strong requirement for the extracted emittance (<0.5 ε_{ini})!

Similarities

	CEPC	FCC-ee		
Scheme	Partial Double Ring Full Double Ring			
SR power (2 beam) [MW}	100			
Crossing angle [mrad]	30			
Crab waist	yes, incorpolated with LCCS			
Arc cell	90°/90° FODO			
Sextupoles	non-interleaved -I pairs			
Sext. families	up to 240 294			
Dynamic aperture optimization method	Munti-Objective Differential Evaluation, etc.	downhill simplex		

Differences

	CEPC	FCC-ee
Scheme	Partial Double Ring	Full Double Ring
Circumference [km]	54	100
L at H [10 ³⁴ m ⁻² s ⁻¹]	3	5
L at Z [10 ³⁴ m ⁻² s ⁻¹]	3.6	200
Sawtooth	uncorrectable. reduced by inserting more RF sects.	completely correctable
SR to IP	< 190 keV @ H	< 100 keV @ tt
Strong-strong beam-beam instability	can be more robust due to smaller β_x^* (= 0.1 m) at Z	luminosity reduction by 50% at Z ($\beta^*_x = 0.5m$)
Dynamic aperture	Under development	OK for a perfect machine
Hadron machine	can coexist	removes ee

Summary

With the partial double ring (PDR) scheme at CEPC, both machines are obtaining more similarities:

- 2 IPs/ring, with 30 mrad crossing angle.
- Local chromaticity correction with crab waist.
- ✤ 90/90 FODO cells in the arc.
- Non-interleaved sextupole pairs with -I transformation.
- Optimization of dynamic aperture with hundreds of sextupole families.

* Major differences still remain:

- ✤ The luminosity at Z, CEPC/FCC-ee ≈ 1/50.
- The level of synchrotron radiation toward the IP (CEPC is x2 higher)
- Tapering is not possible in PDR.
- * CEPC's β_x^* is 1/5 of FCC-ee's. The strong-strong beam-beam instability may be weaker in CEPC.

POSSIBILITY OF CIRCULAR COLLIDERS (AN OLD IDEA)

21 Dec 2016 K. Oide @ KEK Accelerator Seminar

Luminosity of e+e- Colliders

• Circular collider: luminosity is limited by the synchrotron radiation power:

$$\mathcal{L} \approx \frac{1}{2er_e} \left(\frac{\gamma I \xi_y}{\beta_y^*} \right)$$

$$P \propto \frac{\gamma^4}{\rho} I$$

$$\Rightarrow \mathcal{L} \propto \frac{P \rho \xi_y}{\gamma^3 \beta_y^*}$$

- At high energies beamstrahlung sets another limitation.
- Is there any way to overcome this limitation?

An old idea

- Linear collider was a ring collider when it was first proposed.
 - The particles and beam energy are totally recovered.
 - The recirculated arc at a low energy works as a part of damping ring.
 - The synchrotron radiation is independent of the collision energy.
- Does this scheme work?

Power dissipation at the energy recovery linac

• The energy recovery linac must use a standing CW, otherwise the synchronization with the counter rotating beam is difficult. Then:

$$P_{c} = \frac{\omega_{\rm rf} U_{\rm rf}}{Q}$$
$$U_{\rm rf} \approx \frac{\epsilon_{0}}{2} g^{2} \times \pi a^{2} L_{\rm acc}$$

 $L_{\rm acc}$: total length of acceleration

 $g = E_{\rm cm}/L_{\rm acc}$: accelerating gradient

a: effective radius of the field region

• Examples at E_{cm} = 3 TeV:

scheme	f _{rf} (GHz)	Q	a (mm)	g (MV/m)	P _c (GW)	P _{300K} (GW)
X-band	12	10 ⁵	3.5	100	39	39
SRF @ 2K	1.3	4x10 ¹⁰	70	40	0.0017	0.25
P-W	6500	5000	0.3	1000	30800	30800
P-W extreme	6500	5000	0.003	1000	3.08	3.08

• Plasma Wake assumes $g = mc\omega_p$.

• This power dissipation is independent of beam current/luminosity.

Beamstrahlung

• A criteria of beamstrahlung for a circular collider has been given by V. Telnov:

$$\left. \frac{N}{\sigma_x^* \sigma_z} < 0.1 \eta \frac{\alpha}{3\gamma r_e^2} \\ \mathcal{L} \approx \frac{1}{2er_e} \left(\frac{\gamma I \xi_y}{\beta_y^*} \right) \right\} \Rightarrow \mathcal{L} \approx \frac{I}{2e} \left(\frac{0.1 \alpha \eta}{6\pi} \right)^{2/3} \left(\frac{\xi_y}{\gamma r_e^5 \varepsilon_y} \right)^{1/3}$$

 η : momentum acceptance at the collision energy α : fine structure constant

• The two notations of the luminosity give:

$$\beta_y^* > \left(\frac{3600\pi^2 r_e^2 \gamma^4 \xi_y^2 \varepsilon_y}{\alpha^2 \eta^2}\right)^{1/3} , \text{ of }$$
$$\frac{\mathcal{L}}{I} \propto \frac{\xi_y}{\beta_y^*} < \left(\frac{\alpha^2 \eta^2 \xi_y}{3600\pi^2 r_e^2 \gamma^4 \varepsilon_y}\right)^{1/3}$$

10

- The momentum acceptance at collision:
 - $\eta = r_{bc}\eta_0 \frac{E_0}{E}$ η_0 : energy acceptance of the arc E_0 : bunch compression ratio E_0 : arc energy

A possible parameter set for 10³⁵ cm⁻²s⁻¹ @ 3 TeV

DUMP e ⁻ e ⁻	
Beam Energy (TeV)	1.5
Beam current (mA)	14
β [*] _{x,y} (mm)	460, 4.6
ε [*] _{x,y} (pm) @ 1.5 TeV	1, 0.01
σ [*] _{x,y} (nm)	680, 6.8
σ _z (mm)	5
Particles / bunch (10 ¹⁰)	0.065
ξ _{x,y}	0.1, 0.1
Bunch separation (ns)	7.4
Arc energy (GeV)	10
Energy Acceptance @ collision (%)	2
Luminosity (10 ³⁴ cm ⁻² s ⁻¹)	10

- The Higher order mode loss in the accelerating structures.
- Efficiency of the energy recovery
- TMCI, microwave, CBI, e-Cloud, etc.
- Dynamic aperture through the long linac
- Bootstrap / stability of the system