Demonstration of Energy-Chirp Control in Relativistic Electron Bunches at LCLS Using a Corrugated Structure

Karl Bane, 7 April 2017, 加速器物理セミナー, KEK

Introduction

• At the end of acceleration in an X-ray FEL, the beam may be left with an longitudinal position/energy correlation. The metallic beam pipe with small corrugations—a "dechirper"--was proposed as a passive device to "dechirp" the beam

• The RadiaBeam/LCLS dechirper was installed in the LCLS, to give added flexibility to operations. Device commissioning was performed over the period Oct 2015—Feb 2016

• I will present (i) basic wakefield measurements—energy loss, induced chirp, transverse kick, ..., compare to calculations, and (ii) measurements of their effect on the lasing process

• These are the first measurements of a dechirper at high energies (multi-GeV), short bunch lengths (10's of μ m's), and in a functioning FEL

Outline

SLAC

- Description of RadiaBeam/LCLS dechirper
- Basic wakefield measurements—average energy loss, induced chirp, transverse kick
- Dechirper/FEL interaction
- Conclusions

Will not discuss transverse kick for bunch length measurements—A. Novokhatski et al

Selected references on wake theory of corrugated dechirpers:
K. Bane and G. Stupakov, Nucl Inst Meth A 690, 106 (2012)
A. Novokhatski, Phys. Rev. ST Accel. Beams 18, 104402 (2015)
K. Bane, G. Stupakov, Nucl Inst Meth A 820, 156 (2016)
K. Bane, G. Stupakov, I. Zagorodnov, "Analytical formulas of short bunch wakes in a flat dechirper," SLAC-PUB-16497, March 2016

Contributors to Dechirper Commissioning Success (effort led by R. Iverson)

SLAC

FEL Physics	Radiabeam Systems	<u>METS</u>	<u>Controls</u>
T. Maxwell	M. Ruelas	A. Cedillos	A. Babbitt
P. Krejcik	M. Harrison	M.A. Carrasco	Z. Oven
M. Guetg	J McNevin	G Gassner	M Petree
J. Zemella	D Martin	E Roose	
Z. Huang			J. Dong
K. Bane	A. Murokh	K. Caban	M. D'Ewart
G. Stupakov	P. Frigola	S. Jansson	S. Hoobler
P. Emma		T. Montagne	S. Alverson
J. Frisch		J. Garcia	L. Piccoli
H. Loos		R Atkinson	
A. Lutman			
A. Fisher			

A. Novokhatski We especially thank RadiaBeam for building the dechirper

R. Iverson

and collaborating on the commissioning

Linac Coherent Light Source (LCLS)

SLAC

Electron Energy : 14.3 GeVLight Wavelength : 0.15 nmPeak Brillance : 2.0×10^{33} Light Flashes : 120 per sec.Facility Length : 3 kmUndulators : 1Experiment Stations : 1

--LCLS-II: 10⁹\$ upgrade; install superconducting RF, run at 1 MHz repetition 5

LCLS Schematic

SLAC

(P. Emma)

RadiaBeam/LCLS Dechirper Installed in the LCLS

25 um precision over 2 m (P. Krejcik) ⁷

Vertical Dechirper Module - Actuation

(A. Cedillos)

Vertical Dechirper Module - Actuation

(A. Cedillos)

Vertical Dechirper Module – Insertion/Retraction

٠

(A. Cedilløs)

Vertical Dechirper Module – Trim Actuation

•

٠

•

(A. Cedillos)

(P. Krejcik) ¹³

RadiaBeam/LCLS Dechirper

• The dechirper unit consists of 2 m of a vertical dechirper followed by 2 m of a horizontal one

• This configuration was chosen to partially cancel the unavoidable quad wake mismatch at the tail of the bunch

h, *p* not << a => not in perturbation regime. Wakes have a droop, and dechirp in a uniform bunch is not quite as strong, not completely linear

Note: a dechirper based on dielectric-lined, metallic plates will behave similarly

	Depth h
	Slit width t
chosen to partially	Fin width w
quad wake	Total length L
ne bunch	*The Dechimer is a

Value Parameter Units Full gap 2a 1.4/2.0mm 0.5 Period p mm D (1 1 0.5 mm 0.25 mm 12 mm 4* m

*The Dechirper is composed of two modules 2m each.

Three periods of the vertical dechirper

SL AG

Single X-band deflector measurement: @ 4.4 GeV / 180 pC / 1 kA

(T. Maxwell)

Measurements @ 4.4 GeV / 180 pC / 1 kA

(T. Maxwell)

Average E_{loss} vs. Bunch Offset

SLAC

Measured using BPMs in dispersive region, averaged over many shots; dashes show analytical function

To obtain this agreement, a slight adjustment, *g* -> 2.1 mm, was made

Transverse Kick vs Bunch Offset from Axis

I- current

g-gap

ell- bunch length *L*-structure length y-bunch offset

Deflection angle as function of center position in one dechirper module. The gap of the simulations was reduced from g=2.0 mm to 1.8 mm to fit the experimental data

The agreement is very good for both plots

(A. Novokhatski, M. Guetg)

SLAC

For the beam passing by a single dechirper plate: the average wake energy loss $\langle U_w \rangle$ (left) and transverse kick $\langle y_w \rangle$ (right) *vs*. beam offset from plate, *b*, as measured (plotting symbols) and according to theory (red curve). For the fit, the measured points were shifted in *b* by -126 µm and -135 µm, respectively

• Absolute values of $\langle U_w \rangle$, $\langle y_w \rangle$, *b* not known; constant offsets were fit for

Translates directly to measured X-ray spectra

SLAC

From SXR spectrometer @ 870 eV

Near nominal setting (g=1.4 mm) does not degrade FEL performance (T. Maxwell)

Adding Chirped Hard X-ray Bandwidth

Just as effective at high energy:

Observe center downshift / BW increase on FEE HXRS

Can increase chirp for over-compressed bunch—desirable for some experiments

(T. Maxwell) 22

First evidence of lasing suppression with the dechirper 10 October 2015

-SLAC

10 10 10 **Bunch head Bunch head Bunch head** y [mm] y [mm] шШ 5 5 5 0 0 -5 -5-5-10-10 -10-4-3-1-2-2-4 -2 -4 -3-1-3-1x [mm] Time [uncalibrated] x [mm] Time [uncalibrated] Time [uncalibrated] Moderate transverse kick No kick Large kick

Profile Monitor OTRS:DMP1:695 10-Oct-2015 17:00:3 Profile Monitor OTRS:DMP1:695 10-Oct-2015 17:01:4 Profile Monitor OTRS:DMP1:695 10-Oct-2015 17:02:0

- Larger kick was given by closing more the gap (instead of changing the structure offset), evidently the beam was travelling slightly off-axis from the structure
- Trajectory feedbacks keep the center of mass of the electron beam on the straight trajectory
- Larger kicks yield a shorter lasing slice

(A. Lutman) 24

Fresh-slice double-pulses:

Two color scheme, with color separation and tail lasing first

Dechirper Configuration	Gap	Offset
Vertical	3.5 mm	0.8 mm
Horizontal	OUT	/

Undulator Configuration	Status	K value
1-8	IN	K~3.455, Strong Saturation taper from Und #6
10-25	OUT	/
26-33	IN	K~3.505 Variable Taper (Regular/Reverse)

Fresh-slice double-pulses:(A. Lutman)Two color scheme, with color separation and tail lasing first

Conclusions

SLAC

- Large-scale dechirper system has been realized for high-energy (GeV) short bunch (10s of um) bandwidth control at the LCLS
 It is a precision instrument fully integrated into the LCLS. The vanes are
- straight and settings are reproducible to 25 um over 2 m
- Wake measurements—energy loss, chirp, transverse kick—agree well with theory; also for single plate
- The fast kicker capability of the dechirper is being applied for two-color and self-seeding applications; delivering improved two-color radiation to users

• An improved dechirper unit (horizontal part only) is being designed and built by RadiaBeam for use in LCLS-II for use as fast kicker (not needed as dechirper). With 1 MHz bunch rate cooling is needed. The Joule heating has been studied, and the cooling requirements are not severe (~200 W/m at max)

Some of the Contributors

