

PLS Status and Features of the PLS-II Project

Sang Hoon Nam On behalf of PAL Staffs Pohang Accelerator Laboratory POSTECH

Nov. 16, 2009

KEK, Tsukuba, Japan

KEK_Visit_20091116

PAL: Geology

KEK_Visit_20091116 POSTECH CAMPUS

PAL: Geology

I. PLS

Project started	Apr. 1 1988
Ground-breaking	Apr. 1 1991
• 2-GeV Linac commissioning	June 30 1994
Storage ring commissioning	Dec. 24 1994
User's service started	Sept. 1 1995
<u>1st PLS Upgrade Complete</u>	Nov. 1 2002
✓ Energy ramping to 2.5 GeV	Sept. 1 2000
✓ 2.5-GeV injection	Nov. 1 2002
II. 2 nd Major Upgrade of the PLS (PLS-II)	
• 3.0 GeV PLS-II Upgrade begin	Jan. 2009
<u>3.0 GeV PLS-II Upgrade Complete</u>	Dec. 2011
III. PAL XFEL Proposal	

IOGeV Linac Based 0.1 nm x-ray FEL Proposal

2009

PLS STATUS

Pohang Light Source

2.5 GeV Linac

2.5 GeV Storage Ring

Beamlines and Exp. Stations

Beam energy (GeV)	2.5
RF (MHz)	2856
Klystron power (MW), max	80
Bunch length (ps)	13
Normalized emittance (nm.mrad)	150
Beam current (A)	1
Energy spread (%), FWHM	0.6
Total length (m)	160

Beam energy (GeV)	2.5
Circumference(m)	280.56
Natural emittance (nm)	18.9
RF (MHz)	500.082
RF voltage (MV)	1.6
Tunes	14.28/8.18
Super-periods	12

KEK_Visit_20091116

January 2009

PLS Beamline Status

KEK_Visit_2009 fs THz BL : Technical Building II

Summary

- > More than 2,000 PLS users per year.
- Total 5,213 accumulated experiments (total 17,524 accumulated users) from 1995 opening to 2007.
- > More than 20 % yearly increase since Yr 2000.

Statistics

Average Impact Factor (IF) of Publications

KEK_Visit_20091116

PLS Operation Status

		Yr 2007	Yr 2008
 Operation Mode: 		2.5 GeV (20)0 mA)
 Injection Period: 	12 H	Hours (2 injecti	ons/day)
 Days of Operation per Run: 		7-10 Days	
• User Operation:	[Days]	192	195
	[Hours]	4,617	4680
 Turn On and Machine Study: 	[Days]	47	53
	[Hours]	1,119	1272
 Upgrade and BL Construction: 	[Days]	109	104
	[Hours]	2,616	2,496
• Shut-down:	[Days]	17	13
	[Hours]	408	312
• Beam Availability:	[%]	98.4	97.0

Service Availability Record

- Storage Ring Beam stability
- Linac Beam Stability
- > Top-up Operation
- > **ID Operation Improvement**
- > Confirm the PLS-II operation conditions in the PLS

FEATURES OF PLS-II PROJECT

PLS-II: Justification

PLS-II Justification

- The PLS was built the first in Korea, and the fifth in the world.
- Since the PLS operation, the number of users and publications increased remarkably (>20%/ yr increase from 2000), and contributed in the improvement of Korean as well as world science and technology.
- So far, the PLS and user community maintain world competiveness.
- Currently, more than 30 third generation light sources are in operation, construction, or plan. Highly competitive.
- To keep the competitiveness and lead this scientific community, the beam quality and number of IDs of the PLS need to be upgraded.
- Thus, the PLS-II is planned.

- Project Period: 3 years (2009 2011)
- Total Budget: US 100 M\$
- > Yearly Budget: in US M\$ (1U\$ = 1000 Won)

Item	m Year			Total
	2009	2010	2011	
Storage Ring	15.1	25.11	9.42	49.63
Linac	8.57	5.97	1.6	16.14
Beamline	5.46	11.82	6.62	23.9
Utility	0.87	3.5	5.96	10.33
Total	30.0	46.4	23.6	100.0
KEK Visit 20091116				

Major Goal of the PLS-II Upgrade

Item	PLS	PLS-II
Increase Energy	2.5 GeV	3.0 GeV
Lower Emittance	18.9 nm∙rad	5.6 nm∙rad
Increase Stored Beam Current	200 mA	400 mA
Increase No. of IDs	10	>20
Increase Brightness	$\sim 2 \times 10^{18}$	~10 ²⁰
Change Lattice Type	TBA	DBA
Change Operation Mode	Decay	Top-up

	Milestones	Remark	
Linac	 Energy Upgrade 2.5 GeV → 3.0 GeV Improve Energy Stability 0.5% → < 0.2% 	Improve the injection efficiency for the top-up operation	
	 Achieve Top-Up Operation Increase Stored Current 200 mA → 400 mA 	Improve beam stabilities by minimizing thermal load variations	
	■ Reduce Beam Emittance 18nm·rad → 5nm·rad	Results in about 100 times increase in the photon-beam brightness	
Storage Ring	RF Power Upgrade up to 800kW (663 kW by beam)	Compensate for increased radiation losses due to increased currents and ID numbers	
	 Improve Storage Ring Lattice for accommodating more IDs 10 EA → 20 EA 	Utilize combined-function dipoles to increase straight sections	
	Establish Automation System for the Remote Experimentations	Improve beamline accessibility and throughput	
Beamlines & Infrastuructures	Reinforce Radiation Shieldings		
	Reinforce HLS (Hydrostatic Leveling System)	Measure ground movements in real time	

Spectral Brightness of the PLS-II

ID radiation brightness from the PLS-II is expected to be 2 x 10²⁰ photons/sec/mm²/mrad²/0.1%BW (@ 10 keV (1)) which is about 100 times brighter than the existing PLS.

Linac & BTL

- Energy Increase: 2.5 to 3.0 GeV
 - > Add 1 module of klystron and modulator units.
 - Increase accelerating gradient
 - > Add 4 more high gradient accelerating columns
- Top-Up Injection
 - > Improve reliability
 - **>** Reduce MTBF
 - > Improve energy stability and spread

	PLS	PLS-II
Energy	2.5 GeV	3 GeV
Repetition Rate	10 Hz	10 - 30 Hz
Energy Stability	0.5% rms	0.1% rms
Energy Spread	0.6% rms	< 0.2% rms
Emittance (normalized, rms)	150 mm mrad	< 20 mm mrad
Gun Pulse Length	1.5 ns FWHM	~0.5 ns FWHM
Klystron Power (Operating Levels)	50 – 60 MW	$70-80 \mathrm{MW}$
SLED Gain	1.5 – 1.6	1.6 – 1.7
Diagnostics	BCMs, BASs, BPRMs	+ BPMs, Slits, Wire Scanners

PLS-II Gun: Comparison of Gun Systems

	PLS	PLS-II
Number of Guns	Single Gun	Single Gun with fast replacement
Beam Energy	80 keV	80 keV
Beam Current	1 A peak	1 A peak
Pulse Length	1.5 ns FWHM	~0.5 ns FWHM
HVPS Type	DC	DC
Beam Transmission	80%	60%

- 1. 12 klystron&modulator systems
- **3. MK2 to MK11: four accelerating columns 4. The klystron drive uses main drive line.**
- 5. Klystron Out Power: 50-60 MW (~19 MV/m)

5 V 2 W Pre-amp. Timing .1 mW CW 2.856 MHz 1 W CW 15 V with PSK System Master Osc. -3.5 dBm CW 4.1_us ◀ SSA 180 0° 800 W Peak **K1** 1.1_μ s **Main Drive Line** 120 kW Coad **RF Phase State** 26.5 dB T C11 10 dB C12 10 dB C3 7 16 dB C2 7 16 dB W/G - Coaxial **Cross Coupler** IPA IPA IPA IPA K2 K3 K11 K12 Я Ŕ S3 S12 \square s2 ∕⊖ s11 10 dB 20 dB 🛥 Attenuator 3-dB Power Phase 3-dB Power Divider Shifter Divider 3-dB PD G P.B BUN. A2 A1 A3 A4 A6 A43

2. MK01&12: two accelerating columns

26

Linac MW Layout (2.5GeV → 3.0GeV Energy Upgrade)

	MK1 1(set)	MK2 - MK11 10(set)	MK12 – MK13 2(set)
Klystron output power	60 MW	75 MW	75 MW
Model	SLAC5045	Toshiba E3712	
Number of A/C	2	40	4
Type of A/C		IHEP Commercial	
Av. energy gain of SLED	NA	~1.6	
Gradient of A/C		23.1 MV/m	32.7 MV/m

KEK_Visit_20091116

Linac/BTL Beam Instrumentation of the PLS

		No.	Operation	Dements		
Instrument	Linac	BTL(BAS)	Operation	Kemark		
BCM	7	5(1)	0	ОК		
BPRM	4	5(1)	0	ОК		
BLM	42	12	0	Need controller		
BPM	13	Linac pickup install(~2009.8)BTL pickup ok		Linac pickup 13(1) install(~2009.8)		Need DAQ
				Operation		
Beam Charge Monitor		1(1)	ICT install	Need DAQ		
YAG screen monitor		1(1)	screen	Need Controller		
Gallery environment	1		operation	SLED, gallery, driver line		
Beam slit		1(1)	Installed (2009)	Need controller/monitor		

Storage Ring

Issues on Lattice Design / Limitations Overcome

Straight section for IDs

PLS-II Beam Parameters at Photon Source

	Long SS	Short SS	Bending Magnet
Number	9 ID [1 LSS for Injection, 2 LSS for SRF]	11 ID (1 SSS for Instruments)	24
Length or Bending R (m)	6.8	3.1	6.875
$\beta_{x}(m)$	6.16	2.84	0.38
$\beta_{y}(m)$	4.90	2.46	14.14
$\eta_{x}(m)$	0.21	0.17	0.037
$σ_x x σ_y (μm^2)$	234 x 17	167 x 12	47 x 28

Diagnostics in PLS-II

	Monitor	Qty.	Function
Electron	Beam Position Monitor	96	Beam Position
	DC Current Transformer	1	Average Beam Current
	Stripline Electrode	2	Tune, Beam Damping
	Screen Monitor	1	Beam Position (Commissioning)
	Scraper	1	Beam Trimming, Dynamic Aperture
Photon	Photon Beam Position Monitor	36	Frontend Beam Position
	Diagnostic Beamline		
	X-ray	1	Beam Profile, Beam Size
	Visible Light	1	Beam Size, Bunch Length

PLS-II Magnet Layout (Half Cell)

PLS-II Magnets

Туре	Number	Key Parameters	Remarks
Gradient	24 (2 V12)	1.4555 T, 4.0028 T/m	All powered in series
	(2 X12)	Gap=34 mm, L _{eff} =1.800 m	
Quadrupoles	96 (8 X12)	4 types, Max Gradient 22T/m, R _c =36 mm	Powered in family series with independent aux coils.
Sextupoles	144 (12 X12)	Max B'=550 T/m2 R _c =39 mm, 6 types	SkewQ, V-corrector, H-corrector, combined function
Kicker Magnet	4		Recycle existing one
Lambertson Septum	1	3.0 GeV, 8.8 degree vertical bending,	

PLS-II Magnet Power Supply

PLS-II Magnet Power Supply						
Ту	pe of MPS	Quantity	Connection	- Remarks		
Bending Magnet: 900[A], 550[V]		1 set	Series	Recycled		
Sextupole: 450[A], 300~410[V]		6 sets	Series	A	3: Recycled, 3: new	
				В	New	
Quad Main	800[A], 275~475[V]		Series	В	3: Recycled, 1: New	
(Q1,Q2,Q3,Q4)		i Selleach (4 Sels)		Α	New	
Quad Aux. (Q1,Q2,Q3,Q4)	20[A], 15~20[V]	12 sets/each (96 sets)	Individual		New	
Corrector (V/H): 20[A], 30[V]		V/H (192 sets)	Individual	102: Recycled, 90: New		
Septum: 250[A], 25[V]		1 set	Individual	Recycled		
Skew: 20[A], 10[V]		144 sets	individual	New		
BM, Q-main		Location : MPS room				
Sextupole, septum		Location : Control Shed (1 place)				
Corrector, skew,		Location : Control Shed (12 places)				
Q-Aux.		Location Control Shed (12 places)			36	

PLS-II Vacuum Chamber

PLS-II RF system

Parameters	PLS-II RF	PLS RF	
Current [mA]	400	200	
RF frequency [MHz]	499.66	500.082	
Total beam loss power (kW)	663	130.2	
Accelerating Voltage [MV]	3.3	1.6	

• To provide the required RF power and control beam instabilities at higher energy and beam currents with more high field IDs, the current PLS RF system needs to be fully replaced with a new superconducting RF system.

	SC
Number of cavity	3
RF voltage per cavity [MV]	1.1
Wall loss power per cavity [kW]	0.013
Beam load power per cavity [kW]	223
RF Power need per cavity [kW]	232
Number of high power system	300 kW × 3
Number of LLRF system	3
Cryogenic heat load power (W)	650
Need for the storage ring tunnel space	1.5Long-SS

3 sets of superconducting RF system (2 set in Phase-I).

Control System Standard Open Architecture

Control System : Overall Configuration

Design Consideration

- **>** Girder Elevation: 1,400 mm from the SR tunnel floor
- Higher natural frequency : >30 Hz (Goal)
- > Allow the active adjustment in vertical direction: ±50 mm (> 25 year coverage)
- ➤ Girder Deformation : < ±30 µm</p>
- > Instruments: HLS, HPS, LVDT

Beamline

Six Divisions of User association and proposed ID beamlines

► XRD & Topography	► XAFS
Coherent & nano-beam X-ray scattering	Time-resolving XAFS
High energy High flux materials Science	Nano-proving XAS
► SAXS	Bio-macromolecular Crystallography
Micro-beam SAXS	High Flux nano-crystallography
Anormalus SAXS	Micro-crystallography
► Photoemission	► Biomedical Imaging
Nanoscope	Medical Imaging
Middle energy spectroscopy	Nanoscopy

PLS-II ID SELECTION: Priority

- **1. Scientific Importance**
- 2. Technical feasibility
- **3.** The compatibility with the upgraded performance
- 4. The size and potentials of the relevant user community
- 5. The difference from the present beamlines

Phase I	Phase II
Micro-beam SAXS	High energy high flux materials science
High Flux nano-crystallography (MX)	Middle energy spectroscopy
Coherent & nano-beam X-ray scattering	Nano-proving XAS
Medical Imaging	Anomalus SAXS
Time-resolving XAFS	Nanoscopy (Biomedical)
Nanoscope (Photoemission)	Micro-crystallography

	Beamline	Energy range	ID (PLS)	ID (PLS-II)		
1	2A Magnetic Spectroscopy	0.1~1.5 keV	2 m EPU	5 m EPU	In operation	
2	3A Angle Resolved PES	0.01 ~ 1 keV	2 m PU	5 m EPU	In operation	
3	4A Protein Crystallography	5 ~ 17 keV	2m MPW	2m MPW	In operation	
4	5A High flux Mat. Science	5 ~ 20 keV	2m MPW	2m MPW	In operation	1 In-vac.
5	8A Nano PES	0.1 ~ 1.5 keV	4.5 m PU	4.5 m PU	In operation	2 MPW
6	11A Resonant Scattering	4 ~ 13 keV	1 m Rev.	1 m Rev.	In operation	3 Undulator
7	9A U-SAXS	5~20 keV	2m In-vac.	2m In-vac.	Constructing	2 In-vac.
8	10A XAFS	5 ~ 50 keV	2m MPW	2m MPW	Constructing	3 MPW 3 Undulator
9	Microbeam-SAXS	5 ~ 25 keV		2m In-vac.	PLS-II-1st	
10	High Flux nano MX	4 ~ 14 keV		2m In-vac.	PLS-II-1st	
11	Coherent & Nano scatt.	5~20 keV		2m In-vac.	PLS-II-1st	
12	Medical Imaging	4 ~ 50 keV		2m MPW	PLS-II-1st	6 In-vac.
13	Time-Res. EXAFS	5 ~ 15 keV		2m In-vac.	PLS-II-1st	4 MPW
14	Nanoscope	0.1 ~ 1.5 keV		5 m EPU	PLS-II-1st	4 Undulator
15	High Energy Scattering	5~50 keV		2m MPW	PLS-II-2nd	
16	Middle Energy Spectro.	0.5 ~ 3 keV		5m EPU	PLS-II-2nd	8 In-vac
17	Nano-probe XAS	5~20 keV		2m MPW	PLS-II-2nd	7 MPW
18	A-SAXS	5~30 keV		2m MPW	PLS-II-2nd	5 Undulator
19	Medical Nanoscopy	4~13 keV	Visit 20091116	2m In-vac.	PLS-II-2nd	
20	Micro MX	6 ~ 18 keV		2m In-vac.	PLS-II-2nd	

Re-distribution of PLS-II Beamlines

Summary

- PLS-II has completed its major design and started component purchase.
- Final detail design was reviewed by the PAL international advisory committee (IAC) on June 6~7, 2009.
- **>** TDR will be published in November 2009.
- The project is expected to finish on time and budget.

Future Plans of PAL

XFEL (X-ray Free Electron Laser) Facility (4th Generation)

- Coherent X-ray Beam (X-ray Laser)
- Super-high Beam Flux
- Nanoscale Beam Size
- Femtosecond Pulse X-ray Beam
- > Energy: 10 GeV (0.1 nm)
- > 3 X-ray BLs & 3 VUV BLs (Start with 3 X-ray BLs)
- **Budget: U\$ 400 M**
- Project Period: 2011-2014

Key Parameters

- 1. Wavelength: 0.1 nm, 1-4 nm, > 10 nm
- 2. Electron beam energy : 10 GeV (~550 m)
- 3. Undulator:

in-vacuum, g_u= 5.3 mm (~100 m)

KEK_Visit_20091116

High-Tech Medical Cluster Project in Korea

- ✓ Korean government initiated project
- ✓ Selected two high-tech medical clusters:
 - Daegu and KyungBuk (PAL involved)
 - Osong in ChungBuk
- \checkmark Plan to invest ~ U\$ 5 billion in 30 years (to 2038)
- ✓ Major Contents
 - Advanced medical service
 - Novel drug discovery and development
 - High-tech medical instrument development
 - Global medical network
 KEK Visit 20091116

PAL Involvement in the Medical Cluster

 ✓ In proposal to establish a drug discovery center to support the Daegu and KyungBuk medical cluster
 ✓ Budget: U\$ 100 million

Thank you!