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Sorage Ring

The Cornell Electron
Storage Ring (CESR)
was colliding electrons
and positrons in the
CLEOQ detector.

Since 2008, the storage
has been reconfigure
as a test facility to study
damping rings.

The detector region has
a series of damping
wigglers installed.

The CesrTA program has involved understanding electron clouds in positron storage
rings, tuning the machine for lower beam emittances, understanding other collective
effects such as intrabeam scattering and fast ion effects.

The program has made valuable contributions toward the conceptual design report
(CDR) of the ILC.

Several advances in modeling/simulating the system under different conditions have
been made and compared against experiments. These same simulations programs,
once validated at CesrTA can be used to study designs of future facilities.
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e Use the train to generate the electron cloud
e Observe the behaviour of the withess bunch
 Alter the properties of the witness bunch

- position behind the train

- charge

- feed back (on/off)

- emittance, chromaticity
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studies

The X-ray beam size monitor (xbsm)
Captures synchrotron radiation emitted
from a bunch onto a detector.

A beam position monitor
§BPM), that consists of
our “buttons” that pick up
signal from the beam
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A typical signal produced on the
xbsm with an estimated beam size
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*The accelerator is divided into several
Segments which contain electron cloud.

*The electron cloud of each segment
Is collapsed onto a 2D mesh.

*The beam is divided into several slices
represented by a series of 2D meshes.

*The beam passes through the cloud
slice by slice.

*Both the species are evolved during
this process.

Program originally developed by Mauro Pivi
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*The computation is distributed over several processors using MPI routines.

*Each processor handles one or more slice-cloud interaction.

*Once the beam distribution of the slices, belonging to a processor is evolved, they can
proceed to the next mteractingi point independent of slices from other processors.

*The beam particles from all slices/processors collected and distributed once per turn.

The computations are performed at the NERSC supercomputers located in Berkeley.

Program originally developed by Mauro Pivi
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Physical Parameters Simulation Parameters
Circumference 768.4 m number of IPs 900
Energy 2.085GeV (x,y) extent 20Xo
Bunch Length 1.22cm Extentin “z”-  8Xo
Emittance 2-6nm(x) 20pm(y) # of macroe* 300000
Chromaticity  ~0 # of macro e 100000
Tunes H91100 9.6280) #of grid cells  128X128
Bunch Charge 1.28-256nC # bunch slices 96

Bunch Spacing 14ns # of processors 96
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Fractional Tune Shift Between First Bunch and Witness Bunch, Run #1377
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with and without electron cloud
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Same bunch charge as previous slide; We see a tune shift only in “y” as in
experiments




Amplitude of oscillation of beam centroid in

simulations

Cloud density = 10*/m?®
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above formula.
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e" Vertical Beam Size, elogl1906 4/7/2014
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Beam size measurements, 30 bunch train
feedback on + witness bunch feedback on/off

Note: The train Is
under feed back In
both cases. Thus,
multi bunch effects
are minimized

Witness bunches just
behind the train have
a much larger beam
size in the absence of
K.

Significant beam size
expansion Is seen
even with feedback.

We dont have an
explanation for the
first bunch expansion!
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e’ Vertical Beam Size, elogl1939 4/12/2014
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Beam Size measurements 45 bunch train (feed on) +
witness Bunch (feedback on/off)

Longer train, less
charge per bunch.

We do not see the
lead bunch blow up
In this configuration.

The results are
otherwise similar to
previous case.

The “*hump” near
witness bunch 65 iIs
most likely not due to
electron cloud.
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Horizontal Tune of the Witness Bunch Vertical Tune of the Witness Bunch
April2014Batchelog1939, 1=0.5mA /bunch April2014Batchelog1939, I=0.5mA/bunch

—40 40
. B Power (dBm)-60

ower (dBm) 60 0 Bunch number
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245

Tune shift of all withess bunches for the 45 bunch train case

The “Hump” in horizontal tune Peak corresponds to the
“*Hump” in vertical beam size of previous slide.

The appearance of the large peaks in the vertical tune
corresponds to the transition in beam size increase
Of the witness bunch in the previous slide




Sample of oscillation amplitude of bunch with

and without feedback
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YZ Orientation of Bunch, Weighted by Relative Charge per Slice YZ Orientation of Bunch, Weighted by Relative Charge per Slice
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Longitudinal Position Relative to Initial Bunch Length Longitudinal Position Relative to Initial Bunch Length

Perform a linear fit over the centroid of all the bunch slices for
every turn. Motion of bunch centroid is removed in the fit.

Amplitude of head-tail oscillation (m=1 mode) increases by
Afnl%rder of magnitude with increase in cloud density by a factor
of 10.

Note: The head tail motion is self induced by the electron cloud.




Displacement Along Bunch Relative to Initial Beam Size
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Longitudinal Position Relative to Initial Bunch Length

Remove the centroid motion and orientation of bunch, and
perform a parabolic fit over all the bunch slices for every turn.

The amplitude of this mode increases by an order of magnitude
When the cloud density is increased by a factor of 10
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Turn by Turn Slope of Crientation
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Spectrum for Slope of Bunch, Varying Electron Cloud Density
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The magnitude of the slope is obtained from linear fit

for every turn.

The ampliiude of oscillation of slope clearly increases
with increased cloud density.

Spectrum shows strong

synchrotron side bands, and a

peak at betatron tune only for higher cloud density.




Total Charge in Bunch Turn by Turn,

Varying Electron Cloud Density

Relative Bunch Population With Increasing Electron Cloud Density [m'S]
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¢ We worked on a series of experiments designed for
observing single bunch dynamics induced by electron
clouds on positron beams.

¢ Simulations were performed using the program CMAD.

“‘We observed emittance growth with increased cloud
density, decreased chromaticity, increased bunch current.

«Simulations showed a similar behavior when the above
parameters were varied.

«Simulations showed that head tail motion was induced
from electron clouds and is directly co-related with
Increased emittance growth.

*Significant emittance growth was observed even when
bunch oscillation was suppressed with feedback.
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