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The Cornell Electron
Storage Ring (CESR)
was colliding electrons
and positrons in the
CLEO detector.

Since 2008, the storage
has been reconfigured
as a test facility to study
damping rings.

The detector region has
a series of damping
wigglers installed.  

The CesrTA program has involved understanding electron clouds in positron storage 
rings, tuning the machine for lower beam emittances, understanding other collective 
effects such as intrabeam scattering and fast ion effects. 

The program has made valuable contributions toward the conceptual design report 
(CDR) of the ILC.

Several advances in modeling/simulating the system under different conditions have 
been made and compared against experiments. These same simulations programs,
once validated at CesrTA can be used to study designs of future facilities.

About CesrTA 



The “Witness Bunch” Experiment  

Positron Train
Witness
Bunch e+

Feed back

…..........

• Use the train to generate the electron cloud
• Observe the behaviour of the witness bunch
• Alter the properties of the witness bunch 

- position behind the train
- charge
- feed back (on/off)
- emittance, chromaticity 



Instrumentation used for our 
studies

The X-ray beam size monitor (xbsm)
Captures synchrotron radiation emitted
from a bunch onto a detector. 

A typical signal produced on the 
xbsm with an estimated beam size

A beam position monitor
(BPM), that consists of
four “buttons” that pick up 
signal from the beam



Simulation method: CMAD 

*The accelerator is divided into several 
Segments which contain electron cloud.

*The electron cloud of each segment 
is collapsed onto a 2D mesh.

*The beam is divided into several slices 
represented by a series of 2D meshes.

*The beam passes through the cloud 
slice by slice.

*Both the species are evolved during 
this process.

Program originally developed by Mauro Pivi



Computation Method

*The computation is distributed over several processors using MPI routines.
*Each processor handles one or more slice-cloud interaction.
*Once the beam distribution of the slices, belonging to a processor is evolved, they can 
proceed to the next interacting point independent of slices from other processors.
*The beam particles from all slices/processors collected and distributed once per turn.

The computations are performed at the NERSC supercomputers located in Berkeley.

Program originally developed by Mauro Pivi



Table of Parameters: Experiments
 and Computation

Circumference 768.4 m

Energy 2.085GeV

Bunch Length 1.22cm

Emittance 2.6nm(x) 20pm(y)

Chromaticity ~0

Tunes 14.571(x) 9.628(y)

Bunch Charge 1.28-2.56 nC

Bunch Spacing 14ns

number of IPs 900
(x,y) extent 20Xσ

Extent in “z” - 8Xσ

# of macro e+ 300000

# of macro e- 100000

# of grid cells 128X128

# bunch slices 96

# of processors 96

Physical Parameters Simulation Parameters



Observed Tune Shifts – using 
spectrum analyzer

*Shift in tune
Between 1st bunch
In train and witness
Bunch.

*Tune Shift occurs
  mostly in “y” in the
  bottom figure..

*Several other lines
appear along with
a large tune shift.

Conditions:
45 Bunch train,
14 ns spacing
0.5mA/bunch or
1.28nC/bunch.

Witness bunch at
same charge as 
bunch in train.

98ns behind train 

14ns behind train



Tune Shift – between Simulations 
with and without electron cloud

Electron cloud at 1e11/m3
Electron cloud at 1e12/m3

Same bunch charge as previous slide;     We see a tune shift only in “y” as in 
                                                                  experiments

Motion in x

Motion in y

Motion in x

Motion in y



Amplitude of oscillation of beam centroid in
simulations

Cloud density = 1012/m3

x-sigma = 0.1 mm

y-sigma = 0.013 mm

Centroid motion is self excited.

and is noisy because of the 

small amplitude of oscillation.

We must redo the calculations 

with an initial beam offset for a 

cleaner fft and better tune shift 

calculations.



〈 ρ〉=γ⋅
2ΔQ y

r eC 〈 β y 〉

from: K Ohmi - PAC 2001

Electron cloud density can
be estimated using the 
above formula.

In experiments, only the
tune shift is known.

In simulations, cloud density
and tune shift are known 

Cloud density can be 
estimated by

Estimation of Cloud density from tune
Shift.



Beam size measurements, 30 bunch train 
feedback on + witness bunch feedback on/off

Note: The train is 
under feed back in 
both cases. Thus, 
multi bunch effects 
are minimized 

Witness bunches just 
behind the train have 
a much larger beam 
size in the absence of 
feedback.

Significant beam size 
expansion is seen 
even with feedback.

We dont have an 
explanation for the 
first bunch expansion! 
 



Beam Size measurements 45 bunch train (feed on) +
witness Bunch (feedback on/off)

Longer train, less
charge per bunch.

We do not see the
lead bunch blow up
in this configuration.

The results are
otherwise similar to
previous case.

The “hump” near
witness bunch 65 is
most likely not due to
electron cloud.            
  



Tune shift of all witness bunches for the 45 bunch train case

The “Hump” in horizontal tune peak corresponds to the 
“Hump” in vertical beam size of previous slide.

The appearance of the large peaks in the vertical tune 
corresponds to the transition in beam size increase 
Of the witness bunch in the previous slide



Sample of oscillation amplitude of bunch with 
and without feedback

Measurement from xbsm,
Beam under feedback 20th

bunch of 45 bunch train

BPM data of witness
Bunch 33 behind 30
Bunch train

NOTE: The conditions and location of the two do not match so they are not corresponding
data sets. The number must be regarded as “Typical” values.
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Place 0.6mA witness bunch at 
number 46, 49, 54, and 60.

Larger vertical beam size with 
feedback on.

Typically, Lower chromaticity 
provides larger beam size

14 ns spacing

Effect of variation of chromaticity
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    Place 0.6, 0.75, 1mA witness bunch 
at number 46, 49, 54, and 60. 

Larger vertical beam size with 
feedback on. 

Higher witness bunch current 
provides larger beam size in most
cases.

14ns spacing

Effect of Variation of current in witness 
bunch



*Increase in beam size with increased
 cloud density and a transition to rapid
 beam size growth rate. 

*Increase in beam size growth rate
 with increased bunch charge.

*Increase in beam size growth rate
 with decrease in chromaticity.

Effect of varying cloud density, chromaticity
And bunch current in simulations.



First order Head-Tail Motion from 
Simulations

 

Perform a linear fit over the centroid of all the bunch slices for
every turn. Motion of bunch centroid is removed in the fit. 

Amplitude of head-tail oscillation (m=1 mode) increases by
An order of magnitude with increase in cloud density by a factor
of 10.

Note: The head tail motion is self induced by the electron cloud.

Cloud density =
  1e11/m3 

 Cloud density =
  1e12/m3 



Second order Head-Tail Motion,
from simulations

Remove the centroid motion and orientation of bunch, and
perform a parabolic fit over all the bunch slices for every turn.

The amplitude of this mode increases by an order of magnitude
When the cloud density is increased by a factor of 10   

  Cloud density =
  1e11/m3 Cloud density =

  1e12/m3 



Turn by Turn variation of linear 
slope: varying cloud densities

The magnitude of the slope is obtained from linear fit
for every turn.

The amplitude of oscillation of slope clearly increases
with increased cloud density.

Spectrum shows strong synchrotron side bands, and a
peak at betatron tune only for higher cloud density.

e



Total Charge in Bunch Turn by Turn,  
Varying Electron Cloud Density

Initial Bunch Population = 0.8e10 Positrons



Conclusion

 We worked on a series of experiments designed for
 observing single bunch dynamics induced by electron
 clouds on positron beams.

 Simulations were performed using the program CMAD.

We observed emittance growth with increased cloud 
density, decreased chromaticity, increased bunch current.

Simulations showed a similar behavior when the above
parameters were varied.

Simulations showed that head tail motion was induced 
from electron clouds and is directly co-related with 
increased emittance growth.

Significant emittance growth was observed even when
bunch oscillation was suppressed with feedback. 
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