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Using parabolic equation for CSR calculations

In 2009 [Stupakov and Kotelnikov, PRST-AB, 2009] we used PE
and mode expansion method to compute the wake of a toroidal
segment with infinitely long incoming and outgoing pipes of
rectangular cross section.

In a typical case, the characteristic transverse size of the vacuum
chamber a is much smaller than the bending radius R, a� R.

The small parameter ε =
√
a/R can be used to simplify Maxwell’s

equations, keeping only terms to the lowest order in ε. In this
approximation the transverse components of the electric field satisfy
a so called parabolic equation.

We assumed perfect conductivity of the walls and relativistic
particles with the Lorentz factor γ = ∞.

3/26



Introduction PE & eigenmodes Comparison New code Wiggler CUR

CSR in a toroidal cegment (bending magnet of finite
length)

Vacuum chamber has a smooth toroidal segment of radius R and of
arbitrary cross section, connected to two straight pipes.

The characteristic transverse
dimension of the pipe is a.
The coordinate along the
axis of the toroid is s with
s = 0 at the entrance A. The
cylindrical coordinates are r
and y and x = r− R.

The beam initially carries
Coulomb field in the straight
pipe, enters the toroidal
segment, travels in it, and
then exits into the straight
pipe again.
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Fourier transformation

The Fourier transformed components of the field and the current
defined as

Ê(x, y, s,ω) =

∫∞
−∞ dt eiωt−iksE(x, y, s, t) ,

ĵs(x, y, s,ω) =

∫∞
−∞ dt eiωt−iks js(x, y, s, t) ,

where k ≡ ω/c, and js is the projection of the beam current onto
s. The transverse component of the electric field Ê⊥ is a
two-dimensional vector Ê⊥ = (Êx, Êy). The longitudinal
component is denoted by Ês.
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Parabolic equation for the field

A mathematical assumption that leads to the parabolic equation is
a slow dependence of the functions Ê⊥ and ĵs versus s, such that
∂/∂s� k:

∂

∂s
Ê⊥ =

i

2k

(
∇2⊥Ê⊥ +

2k2x

R
Ê⊥ −

4π

c
∇⊥ ĵs

)
∇⊥ = (∂/∂x, ∂/∂y).
The longitudinal electric field can be expressed through the
transverse one and the current,

Ês =
i

k

(
∇⊥ · Ê⊥ −

4π

c
ĵs

)
Boundary conditions:

Ê⊥

∣∣∣
w
× n = 0, Ês

∣∣∣
w
= 0

The second equation reduces to (div Ê⊥)
∣∣∣
w
= 0 on the wall.
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Eigenmodes of toroidal rectangular waveguide

Eigenmodes are solutions of the parabolic equations with ĵs = 0.
Each eigenmode can be characterized by two integer indices, m and p,
and the wavenumber qmp(ω), which is a function of the frequency ω,

Êmp,⊥(x, y, s) = Emp,⊥(x, y) e
iqmp(ω)s,

Êmp,s(x, y, s) = Emp,s(x, y) e
iqmp(ω)s .

The parabolic equation is applicable if |qmp|� ω/c. These modes
constitute a set of orthogonal functions.

If qmp = 0, the mode has phase velocity equal to c and is resonant with
the beam (γ = ∞).

In general case, for a given transverse shape of the pipe, finding

eigenmodes represents a two dimensional problem which can be solved

numerically. For a pipe with rectangular cross section eigenmodes can be

found analytically.
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Field expansion

Consider a point charge moving with a speed of light along the
axis. We expand the perpendicular part of the electric field Ê⊥
generated by the current js into the series

Ê⊥ =
∑
p,m

Cmp(s)Êmp,⊥(x, y, s)

over the eigenmodes. Equation for the series coefficients:

dCmp
ds

= −
2πi

ω
e−iqmps

∫∫
dxdy

(
∇⊥ĵs · E∗mp,⊥

)
The above equations describe the field in the toroidal segment. At the
exit point B from the segment, we re-expand the field into the
eigenmodes of the straight rectangular pipe (also computed within the
paraxial approximation) and find the beam field in the exit pipe.
We wrote a Mathematica code that computes the longitudinal field
Ês(s,ω) on the orbit for a given rectangular geometry.
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Comparison with DZ

Bending magnet with ρ = 16.3 m, L = 4 m, rectangular pipe, full
height 40 mm, pipe width 60 mm. Beam is in the center of the
pipe.
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Beam off-center

The same magnet, but the beam is at 10 mm from the inner
wall—not so good agreement. This is most likely due to the finite
transverse size (σ⊥ = 0.5 mm) in DZ calculations.
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Beam off-center

Offsets 10±0.5 mm, comparison with DZ.
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New approach to the mode expansion method

In this approach I use eigenmodes Emp,⊥(x, y) eiq̃mps of the
straight pipe (of the given cross section) and a solution Êss⊥(x, y)
for the field of the point charge moving with v = c in the straight
pipe along the axis [a rapidly converging infinite series].

In the toroidal section we expand the perpendicular part of the
electric field Ê⊥

Ê⊥ = Êss⊥(x, y) +
∑
p,m

Cmp(s)Ẽmp,⊥(x, y, s)

One can obtain
dCmp
ds

=
ik

R(s)
e−iq̃mps

∫∫
dxdy

(
xÊss⊥ · E∗mp,⊥

)
+

ik

R(s)

∑
p ′,m ′

Cm ′p ′(s) ei(q̃m ′p ′−q̃mp)s

∫∫
dxdy

(
xEm ′p ′,⊥ · E∗mp,⊥

)
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Advantages and disadvantages

The singularity due to the field of the point charge is
eliminated (absorbed in Êss⊥ and integrated out).

Standard ODE solvers can be used for solution of the
differential equations.

Arbitrary R(s) can be treated—many magnets with straights
between them.

Other cross-sections for which analytical expression for Êss⊥
and Emp,⊥(x, y) exist can be treated (round, elliptical, ...).

The code is slower.

To expedite code development, I only coded the part which
calculates ReZ.
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Two magnets with rectangular cross section

R1 = 2.68 m, L1 = .742 m, Ldrift = .927 m, R2 = −2.958 m,
L2 = .286 m. Cross section of the beam pipe: square with
width/height = 34/34mm.
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Solid curve - DZ, dots - GS.
14/26



Introduction PE & eigenmodes Comparison New code Wiggler CUR

Round cross section of the pipe

R = 16.3 m, L = 4 m, round pipe r = 20 mm. Comparison with a
square one with the same cross section area a = 35.4 mm.
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Wiggler CUR impedance in rectangular waveguide

CUR impedance inside a rectangular waveguide was studied by
Y.-H. Chin in preprint LBL-29981, 1990. Unfortunately, he only
considered the limit of a weak undulator, K� 1.
In the opposite limit, K� 1, several simplifying approximations
can be made:

If we are interesed in the wavelengths much longer then the
fundamental wavelength, λ� λ0, we can assume v = c.

Moreover, one can approximate vz = c.

The amplitude of trajectory wiggling � transverse size of the
pipe.
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Calculating ReZ through radiated power

One can calculate the spectral power of radiation of a point charge
P(ω) moving in the undulator and relate it to the real part of the
longitudinal impedance

ReZ(ω) =
π

q2
Pω

This is not a complete solution of the wakefield problem, but it is
good enough for comparison and benchmarking codes. Note that
the Kramers-Kronig relations between ReZ and ImZ do not hold
in general (but they may hold in my approximation[?]).
I do not use the paraxial approximation in this problem, which
allows for checking the accuracy of the parabolic equation (used in
DZ code).
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Calculating radiating power

Working in Fourier representation, everything ∝ e−iωt. Assume
radiation in the forward direction only, E+

n

Erad =
∑
n

anE
+
n , an = −

1

Nn

∫
j ·E−

ndV

Nn =
c

4π

∫ (
E+
n ×H−

n −E−
n ×H+

n

)
· dS

Pω =
2

π

∑
n

Pn|an|
2,

where Pn is the energy flow in the mode of unit amplitude
(Pn = Nn/4).
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Wiggler CUR impedance

CUR in free space in the limit K� 1 was previously studied by
Wu, Stupakov and Raubenheimer [PRST-AB, 6, 040701 (2003) ].
In the limit of low frequencies, k� k0, k0 is the fundamental
radiation wavenumber

Z(k) = πk
kw

k0

(
1−

2i

π
log

k

k0

)
(the impedance per unit length).
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Analytical result for ReZ

Assume a sinusoidal orbit, x(z) = (θ0/kw)(1− coskwz) in an
undulator with Nu periods. The result is

ReZ(k) = 4Z0θ
2
0F(k),

F(k) =
k2w
abk

∑
n1,n2

(
k2ky

2 (2− δ0,n1
)

2kzκ2
+
k2xκ2

kz

(
kz

κ2
−

1

k− kz

)2)

× sin2[πNu(k− kz)/kw]

[(k− kz)2 − k2w]
2

, kx =
n1
a
, ky =

n2
b
,

κ2 = k2x + k2y, kz =
√
k2 − κ2

In the limit Nu → ∞
sin2[πNu(k− kz)/kw]

[(k− kz)2 − k2w]
2

→ π2

k3w
Nuδ (k− kz − kw)

Expect narrow peaks at k− kz − kw = 0.
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KEK-B wiggler impedance, comparison with DZ

Sinusoidal wiggler: wiggler period: 1.08762m, K = 76.57,
γ = 6850, Nu = 10, pipe width/height: 94/94mm
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DZ uses his CSR code with sinusoidal R(s): the code assumes
wiggling vertical wall, that follows the shape of the beam trajectory.
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KEK-B wiggler impedance, comparison with DZ

The same wiggler as above, but the pipe is 100 mm× 20 mm.
Perfect agreement with DZ.

0 2 4 6 8 10
0

100

200

300

400

500

600

700

k (mm-1)

R
e

Z
(O

hm
)

22/26



Introduction PE & eigenmodes Comparison New code Wiggler CUR

SuperKEKB wiggler orbit

We used the magnetic field of the wiggler to compute particle’s
orbit
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Spectrum of the orbit
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There are two distinct periods with k ≈ 6 m−1 and k ≈ 5.34 m−1.
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SuperKEKB wiggler CUR impedance
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Pipe: 90×90 mm. Peaks are the modes with kz(n1, n2) = k− kw:
red - k ≈ 6 m−1, green - k ≈ 5.34 m−1 (n1, n2 < 4).

25/26



Introduction PE & eigenmodes Comparison New code Wiggler CUR

Conclusions

Comparison of the mode expansion code (GS) with numerical
ones (DZ) shows very good agreement in a simple case of one
magnet.

The modified mode expansion approach allows to treat
multiple magnets, as well as pipe cross-sections different from
rectangular (round).

Analytical results for the ReZ of the CUR are derived.

SuperKEK-B wiggler impedance demonstrates sharp narrow
peaks in the range of sub-centimeter wavelengths.
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