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Outline

Outline of the talk
@ Parabolic equation and general formulation of the problem
@ Comparison of my code with numerical results of DZ

o Different approach to the mode expansion method and some
new results

@ CUR impedance in rectangular pipe

@ Conclusions
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Using parabolic equation for CSR calculations

@ In 2009 [Stupakov and Kotelnikov, PRST-AB, 2009] we used PE
and mode expansion method to compute the wake of a toroidal
segment with infinitely long incoming and outgoing pipes of
rectangular cross section.

@ In a typical case, the characteristic transverse size of the vacuum
chamber a is much smaller than the bending radius R, a < R.

@ The small parameter € = \/a/R can be used to simplify Maxwell's
equations, keeping only terms to the lowest order in €. In this
approximation the transverse components of the electric field satisfy
a so called parabolic equation.

@ We assumed perfect conductivity of the walls and relativistic
particles with the Lorentz factor y = co.
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CSR in a toroidal cegment (bending magnet of finite

Vacuum chamber has a smooth toroidal segment of radius R and of
arbitrary cross section, connected to two straight pipes.
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The characteristic transverse
dimension of the pipe is a.
The coordinate along the
axis of the toroid is s with

s =0 at the entrance A. The
cylindrical coordinates are
and y and x =1 —R.

The beam initially carries
Coulomb field in the straight
pipe, enters the toroidal
segment, travels in it, and
then exits into the straight
pipe again.



PE & eigenmodes
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Fourier transformation

The Fourier transformed components of the field and the current

defined as
E(x,y, S, W) = J il e LS E(x,y,s,t),
/]'\S(X>1J)S)w) :J dteiwtiiksjs(x>y)3>t))

where k = w/c, and j; is the projection of the beam current onto
s. The transverse component of the electric field E, isa
two-dimensional vector B, = (E,, ﬁy). The longitudinal
component is denoted by E..
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Parabolic equation for the field

A mathematical assumption that leads to the parabolic equation is
a slow dependence of the functions EL and js versus s, such that
0/0s < k:

0 2k*x 4
a*SEL 7K <V2 B+ R BL— CVJ_JS>

V., =(0/0x,0/0y).
The longitudinal electric field can be expressed through the
transverse one and the current,

i LN
ﬁs = E (VJ_ : EJ_ - C]s>
Boundary conditions:

EL‘ xn =0, ﬁs

w

=0

w

The second equation reduces to (divE )| =0 on the wall.
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Eigenmodes of toroidal rectangular waveguide

Eigenmodes are solutions of the parabolic equations with /j\s =0.
Each eigenmode can be characterized by two integer indices, m and p,
and the wavenumber qmp (w), which is a function of the frequency w,

EmP,J_(MU» S) = gm‘P,J_(X,U) eithp(w)s)
ﬁmPvS(X)y) S) = gmp’s(x’y) eiqmp (w)s X
The parabolic equation is applicable if [qmp| < w/c. These modes

constitute a set of orthogonal functions.

If dmp = 0, the mode has phase velocity equal to ¢ and is resonant with
the beam (y = ).

In general case, for a given transverse shape of the pipe, finding
eigenmodes represents a two dimensional problem which can be solved
numerically. For a pipe with rectangular cross section eigenmodes can be
found analytically.
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Field expansion

Consider a point charge moving with a speed of light along the
axis. We expand the perpendicular part of the electric field B,
generated by the current js into the series

EJ_ = Z Cmp(s)ﬁmp,J_(X>y» s)
pym

over the eigenmodes. Equation for the series coefficients:

dCp 27

s - o™ ﬂ dxdy (Vo5 - Enp 1)

The above equations describe the field in the toroidal segment. At the
exit point B from the segment, we re-expand the field into the
eigenmodes of the straight rectangular pipe (also computed within the
paraxial approximation) and find the beam field in the exit pipe.

We wrote a Mathematica code that computes the longitudinal field
ﬁs(s, w) on the orbit for a given rectangular geometry.
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Comparison with DZ

Bending magnet with p = 16.3 m, L =4 m, rectangular pipe, full
height 40 mm, pipe width 60 mm. Beam is in the center of the

pipe.
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Beam off-center

The same magnet, but the beam is at 10 mm from the inner
wall—not so good agreement. This is most likely due to the finite
transverse size (0, = 0.5 mm) in DZ calculations.
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Comparison
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Beam off-center

Offsets 1040.5 mm, comparison with DZ.
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New code
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New approach to the mode expansion method

In this approach | use eigenmodes &y 1 (X, Y) eldmps of the
straight pipe (of the given cross section) and a solution ﬁsf(x,y)
for the field of the point charge moving with v = c in the straight
pipe along the axis [a rapidly converging infinite series].

In the toroidal section we expand the perpendicular part of the
electric field EJ_

Bl =BF,y)+ ) Crp(s)Emp 1 (%Y, )

p,m
One can obtain
dCunp ik e .
T =gy« avay 6B 65 )
1k ila —a *
* @ Z Cm’p’(s) ¢Hdmp! qmp)s” by (Xgm’v"l ’ gmp L)
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Advantages and disadvantages

@ The singularity due to the field of the point charge is
eliminated (absorbed in ES* and integrated out).

@ Standard ODE solvers can be used for solution of the
differential equations.

@ Arbitrary R(s) can be treated—many magnets with straights
between them.

@ Other cross-sections for which analytical expression for Eif
and Emp, 1 (x,Y) exist can be treated (round, elliptical, ...).

@ The code is slower.

To expedite code development, | only coded the part which
calculates Re Z.
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New code
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Two magnets with rectangular cross section

Ri =2.68m, L1 =.742 m, Layist = .927 m, R, = —2.958 m,
L, = .286 m. Cross section of the beam pipe: square with
width/height = 34/34mm.
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Solid curve - DZ, dots - GS.
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Round cross section of the pipe

R=16.3m, L =4 m, round pipe r = 20 mm. Comparison with a
square one with the same cross section area a = 35.4 mm.
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Wiggler CUR
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Wiggler CUR impedance in rectangular waveguide

CUR impedance inside a rectangular waveguide was studied by
Y.-H. Chin in preprint LBL-29981, 1990. Unfortunately, he only
considered the limit of a weak undulator, K < 1.
In the opposite limit, K > 1, several simplifying approximations
can be made:
@ If we are interesed in the wavelengths much longer then the
fundamental wavelength, A > Ag, we can assume v = c.
@ Moreover, one can approximate v, = c.
@ The amplitude of trajectory wiggling < transverse size of the
pipe.
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Calculating Re Z through radiated power

One can calculate the spectral power of radiation of a point charge
P(w) moving in the undulator and relate it to the real part of the
longitudinal impedance

Re Z(w) = %Pw
This is not a complete solution of the wakefield problem, but it is
good enough for comparison and benchmarking codes. Note that
the Kramers-Kronig relations between Re Z and Im Z do not hold
in general (but they may hold in my approximation[?]).

| do not use the paraxial approximation in this problem, which
allows for checking the accuracy of the parabolic equation (used in

DZ code).
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Calculating radiating power

Working in Fourier representation, everything oc e *“t. Assume
radiation in the forward direction only, E}

T (. oo
Erd — Z aE/, A =~ JJ -E, dV
n n

Cc _ _
Nn:MJ(ngHn—Eanjl)-ds

2
Py = 77[ ; Pn|an|2>

where Py, is the energy flow in the mode of unit amplitude
(Pn = Nyu/4).
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Wiggler CUR impedance

CUR in free space in the limit K > 1 was previously studied by
Wu, Stupakov and Raubenheimer [PRST-AB, 6, 040701 (2003) ].
In the limit of low frequencies, k < ko, ko is the fundamental
radiation wavenumber

K 2k
Z(k) = k= (1 —Liog )

(the impedance per unit length).
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Analytical result for Re Z

Assume a sinusoidal orbit, x(z) = (0p/ky)(1 — coskz) in an
undulator with Ny, periods. The result is

Re Z(k) = 4Z,03F(k),

2
K2, Kky? (2—80n,) k232 [k, 1
F(k) = = ) A
(i) abk )u 2k, 2 u k. \x2 k—Kk,

ny,n2
Sinz[ﬂNu(k_kz)/kw] B _m i _E
(k=2 =K% ° 7 o’ b’

=K+ K, k= VK2 — 52

In the limit Ny — oo

sin?[iNy (k — k) /K] 72

H —_

[(k - kz)z — k\zxv]z kév

Expect narrow peaks at k — k, — k,, = 0.
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KEK-B wiggler impedance, comparison with DZ

Sinusoidal wiggler: wiggler period: 1.08762m, K = 76.57,
v = 6850, Ny, = 10, pipe width/height: 94/94mm

Re Z (Ohm)

Kk (mm™)

DZ uses his CSR code with sinusoidal R(s): the code assumes
wiggling vertical wall, that follows the shape of the beam trajectory.
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KEK-B wiggler impedance, comparison with DZ

The same wiggler as above, but the pipe is 100 mmx 20 mm.
Perfect agreement with DZ.
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SuperKEKB wiggler orbit

We used the magnetic field of the wiggler to compute particle's
orbit
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Spectrum of the orbit
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There are two distinct periods with k ~ 6 m~' and k ~ 5.34 m~.
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SuperKEKB wiggler CUR impedance
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Pipe: 90x90 mm. Peaks are the modes with k,(ni,n,) =k —ky,:
red -k~ 6m~', green - k~5.34 m~! (n;,n; < 4).
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Conclusions

@ Comparison of the mode expansion code (GS) with numerical
ones (DZ) shows very good agreement in a simple case of one
magnet.

@ The modified mode expansion approach allows to treat
multiple magnets, as well as pipe cross-sections different from
rectangular (round).

@ Analytical results for the ReZ of the CUR are derived.

@ SuperKEK-B wiggler impedance demonstrates sharp narrow
peaks in the range of sub-centimeter wavelengths.
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