X and gamma-ray due to inverse Compton scattering of CSR

CSR mini-workshop

Miho Shimada(KEK)

Inverse Compton scattering of CSR

Light source of Compact ERL (245MeV 200p ERL)

- Hard X-ray due to inverse Compton scattering of an external femto-second laser
- Intense CSR at terahertz region

We proposed an inverse Compton scattering of CSR as a light source of ERL.

M. Shimada and R. Hajima, PRSTAB 13, 100701,(2010)

Figure : Compared wavelength and pulse duration of scattered photons at Compact ERL with other light source.

Comparison CSR-ICS with conventional ICS

	Laser-ICS	FEL-ICS	CSR-ICS
Equipment	External laser	Undulator	Only mirror
Synchronization	Difficult	Easy	Easy
Spot size of laser (depends on wavelength)	Smaller	Smaller	Larger
Bandwidth	Narrow	Relatively narrow	Relatively narrow ~ white light
Electron energy	Lower	Lower	Higher
Bunch compression	Difficult	Difficult	Easy
Emittance	Larger	Larger	Smaller

Figure :

Examples of scattered photon energy.

- Laser-ICS : Ti:Sa laser (800nm)
- FEL-ICS : Scattered photon energy estimated from the wavelength of FEL and the electron energy.
- CSR-ICS : Bunch length 100fs wavelength of CSR (30um x 2π)

Proposal of CSR-ICS by other institutes

Fig. 1. A schematic view of the THz-wave spectrophotometry with the compact S-band linac at AIST.

N. Sei et al, APE 1, 087003, (2008)

Fig. 1. Schematic layout of the experimental setup at KURRI-LINAC.

N. Sei and T. Takahashi, APE 3, 052401, (2010)

- CSR-ICS is proposed as a spectroscopy of terahertz region at AIST and KURRI.
- Spectral information of terahertz is converted to the visible region. It enables us a real-time measurement.
- Intensity is very weak.

Optics: 1 Magic mirror scheme for white light source

Transverse electron beam size 100 um [H] x 50 um[V]

- including the energy spread at non-zero dispersion
- betatron function is limited due to the large acceptance angle in the longitudinal direction.
- spot size of CSR is assumed to be the same as that of electron beam (neglecting cut-off effect)

Pulse duration : 100 fs (it will be lengthened after narrowing the band width)

Optics 2 : Optical Cavity scheme for narrow bandwidth

- **Incoherent stacking** because the a. fluctuation of longitudinal position is larger than wavelength of CSR.
- Electron bunch emits CSR inside a cavity. b.
- С. Four mirrors is necessary for two focus points. One is for collection of CSR and another is collision point.

$$P_{CAV} = \frac{P_{in}}{1 - R^n}$$

Coherent stacking a.

- External laser is injected from outside a b. cavity. It passes though a multilayered mirror with low transmittance.
- **Two mirrors** are enough for single focus С. point.

$$P_{CAV} = TF^2 P_{in} / \pi^2$$

501. Instrum. **70,** p.4 (1999)

Finess:
$$F = \pi \sqrt{R^n} / 1 - R^n$$

P_{cav}:Power in a cavity, P_{in}:Input power, R: Reflectance, T:Transmittance, n:Number of mirrors

In both cases, pulse power is stacked by **1000 times** with reflectivity of mirror 99.97%.

Wavelength of CSR for pulse stacking in an optical cavity

Total radiation power : P(k)

$$P(k) = \frac{Np(k)}{N(k)} + \frac{F(k)N(k-1)p(k)}{Coherent}$$

$$F(k) = \left|\int \rho(z)e^{ikz}dz\right|^{2}$$

- P(k): Total radiation power
- N : Number of electron
- p(k): Radiation power per an electron
- $\rho(z)$: Longitudinal electron density distribution
- F(k): Form factor

Gaussian beam with bunch length σ_z

$$\rho(z) \approx \frac{1}{\sqrt{2\pi\sigma_z}} \exp\left[-\frac{z^2}{2\sigma_z^2}\right]$$
$$P(\lambda) \approx \exp\left[-\sigma_z^2 \left(\frac{2\pi}{\lambda}\right)^2\right]$$

Wavelength of CSR stacked in an optical cavity is chose as follows,

$$\lambda \equiv 2\pi\sigma_z$$

Mode matching

Acceptance angle is limited for Mode matching

$$\sigma_{x}^{CSR} \sigma_{x'}^{CSR} \leq \frac{\lambda}{4\pi} \qquad \begin{array}{l} \lambda: \text{ wavelength of } CSR \\ \sigma_{x}^{CSR} : \text{ Horizontal spread of } CSR \text{ source} \\ \sigma_{x'}^{CSR} : \text{ Horizontal divergence of } CSR \text{ source} \end{array}$$

$$\Delta \theta_{c} = \left(\frac{3\lambda}{2\pi\rho}\right)^{1/3} = \frac{1}{\gamma} \left(\frac{2\lambda}{\lambda_{c}}\right)^{1/3} \qquad \Delta \theta_{c}: \text{ divergence of } CSR \\ \sigma_{x'}^{CSR} = \sqrt{\sigma_{x}^{2} + \left[\rho\left(1 - \cos\frac{\Theta}{2}\right)\right]^{2}} \\ \sigma_{x'}^{CSR} = \sqrt{\sigma_{x'}^{2} + \Delta \theta_{c}^{2} + \left(\frac{\Theta}{2}\right)^{2}}. \qquad \left(\rho_{1}^{CSR} + \rho_{c}^{CSR}\right)^{2} \\ \sigma_{x'}^{CSR} = \sqrt{\sigma_{x'}^{2} + \Delta \theta_{c}^{2} + \left(\frac{\Theta}{2}\right)^{2}}. \qquad \left(\rho_{1}^{CSR} + \rho_{c}^{CSR}\right)^{2} \\ \sigma_{x'}^{CSR} = \sqrt{\sigma_{x'}^{2} + \Delta \theta_{c}^{2} + \left(\frac{\Theta}{2}\right)^{2}}. \qquad \left(\rho_{1}^{CSR} + \rho_{c}^{CSR}\right)^{2} \\ \sigma_{x'}^{CSR} = \sqrt{\sigma_{x'}^{2} + \Delta \theta_{c}^{2} + \left(\frac{\Theta}{2}\right)^{2}}. \qquad \left(\rho_{1}^{CSR} + \rho_{c}^{CSR}\right)^{2} \\ \sigma_{x'}^{CSR} = \sqrt{\sigma_{x'}^{2} + \Delta \theta_{c}^{2} + \left(\frac{\Theta}{2}\right)^{2}}. \qquad \left(\rho_{1}^{CSR} + \rho_{c}^{CSR}\right)^{2} \\ \sigma_{x'}^{CSR} = \sqrt{\sigma_{x'}^{2} + \Delta \theta_{c}^{2} + \left(\frac{\Theta}{2}\right)^{2}}. \qquad \left(\rho_{x'}^{CSR} + \rho_{c}^{CSR}\right)^{2} \\ \sigma_{x'}^{CSR} = \sqrt{\sigma_{x'}^{2} + \Delta \theta_{c}^{2} + \left(\frac{\Theta}{2}\right)^{2}}. \qquad \left(\rho_{x'}^{CSR} + \rho_{x'}^{CSR}\right)^{2} \\ \sigma_{x'}^{CSR} = \sqrt{\sigma_{x'}^{2} + \Delta \theta_{c}^{2} + \left(\frac{\Theta}{2}\right)^{2}}. \qquad \left(\rho_{x'}^{CSR} + \rho_{x'}^{CSR}\right)^{2} \\ \sigma_{x'}^{CSR} = \sqrt{\sigma_{x'}^{2} + \Delta \theta_{c}^{2} + \left(\frac{\Theta}{2}\right)^{2}}. \qquad \left(\rho_{x'}^{CSR} + \rho_{x'}^{CSR}\right)^{2} \\ \sigma_{x'}^{CSR} = \sqrt{\sigma_{x'}^{2} + \Delta \theta_{c}^{2} + \left(\frac{\Theta}{2}\right)^{2}}. \qquad \left(\rho_{x'}^{CSR} + \rho_{x'}^{CSR}\right)^{2} \\ \sigma_{x'}^{CSR} = \sqrt{\sigma_{x'}^{2} + \Delta \theta_{c}^{2} + \left(\frac{\Theta}{2}\right)^{2}}. \qquad \left(\rho_{x'}^{CSR} + \rho_{x'}^{CSR}\right)^{2} \\ \sigma_{x'}^{CSR} = \sqrt{\sigma_{x'}^{2} + \Delta \theta_{c}^{2} + \left(\frac{\Theta}{2}\right)^{2}}. \qquad \left(\rho_{x'}^{CSR} + \rho_{x'}^{CSR}\right)^{2} \\ \sigma_{x'}^{CSR} = \sqrt{\sigma_{x'}^{2} + \Delta \theta_{c}^{2} + \left(\frac{\Theta}{2}\right)^{2}}. \qquad \left(\rho_{x'}^{CSR} + \rho_{x'}^{CSR}\right)^{2} \\ \sigma_{x'}^{CSR} = \sqrt{\sigma_{x'}^{2} + \Delta \theta_{c}^{2} + \left(\frac{\Theta}{2}\right)^{2}}. \qquad \left(\rho_{x'}^{CSR} + \rho_{x'}^{CSR}\right)^{2} \\ \sigma_{x'}^{CSR} = \sqrt{\sigma_{x'}^{2} + \Delta \theta_{c}^{2} + \left(\frac{\Theta}{2}\right)^{2}}. \qquad \left(\rho_{x'}^{CSR} + \rho_{x'}^{CSR}\right)^{2} \\ \sigma_{x'}^{CSR} + \rho_{x'}^{CSR} + \rho_{x'}^{CSR} + \rho_{x'}^{CSR}\right)^{2} \\ \sigma_{x'}^{CSR} + \rho_{x'}^{CSR} + \rho_{x'}^{CSR} + \rho_{x'}^{CSR} + \rho_{x'}^{CSR}\right)^{2} \\ \sigma_{x'}^{CSR} + \rho_{x'}^{CSR}$$

Acceptance angle Θ is determined to satisfy the mode matching.

High reflectivity mirror

In the wavelength range of a few 10 um \sim a few 100 um,

- Reflectivity of metal is lower than 98 %.
- It is difficult to fabricate multilayered mirror with larger than 99% reflectivity by conventional method.

Development of high reflectivity mirror for terahertz region

M.Tecimer et al, PRSTAB **13**, 030703,(2010)

FIG. 2. (Color) In (a) four layers of 23 μ m thick Si, and in (b) five layers of 36 μ m thick z-cut quartz, each separated by 75 μ m vacuum gap, create high reflectivity bands centered at $\lambda_C \sim 300-320 \ \mu$ m. The harmonic band centers are located at ~ 100 and $\sim 60 \ \mu$ m, respectively.

- Stacking up photonic crystal separated by vacuum layer.
- Bandwidth is narrow at the higher order wavelength.
- Wavelength, which depends on thickness of the layers, is controllable without losing the high-reflectivity.

Optimization of collision area : 1

• Half cycle of CSR is destroyed by an narrow band mirror.

In the case of bandwidth $\Delta\lambda/\lambda$, pulse duration of CSR is lengthened by a factor $1/(\Delta\lambda/\lambda)$.

Optimization of collision area : 2

- CSR in optical cavity is assumed to be Gaussian beam.
- Hour glass effect is considered at the collision.

Number of scattered photons Nx is independent in Rayleigh length z_R.

1

$$N_X \propto N_{CSR}^{collision} N_e / \pi w_0^2 = N_{CSR}^{all} N_e / \lambda^2$$
 11

X-ray at 200 MeV-ERL

TABLE I: Optical cavity scheme in the Compact ERL : Horizontal acceptance angle are 50 mrad for $\lambda = 190 \ \mu m$ and 110 mrad for $\lambda = 1900 \ \mu m$ for mode matching. Bandwidth of the on-axis X-ray is considered to be $\Delta \lambda_X / \lambda_X \sim \Delta \lambda / \lambda \sim 0.1$ (10%). Pulse duration of the X-ray is same as σ_z/c .

Electron	Charge	σ_z/c	Spot size	CSR	Κ	X-ray	N_X	N_X
energy [MeV]	[nC]	[ps]	$[\mathrm{mm} imes \mathrm{mm}]$	energy [mJ]		energy [keV]	[phs./pulse]	[phs./s]
60	0.077	0.1	0.3 imes 0.3	0.14	0.013	0.4	$1 imes 10^4$	2×10^{13}
60	0.5	1	3×3	0.6	0.009	0.04	4×10^4	$0.7 imes10^{13}$
200	0.2	0.1	0.3 imes 0.3	1.0	0.034	4	$2 imes 10^5$	1×10^{14}
200	1	1	3 imes 3	2.5	0.017	0.4	$3 imes 10^5$	$3 imes 10^{13}$

- Number of photons of X-ray (b.w.10%)
 - Number of photons per pulse : ~ 10⁴⁻⁵ phs/pulse.
 - Flux : ~ 10¹³⁻¹⁴ phs/s.
- Energy range of X-ray
 - From **0.04 to 4 keV**.
 - 10 keV X-ray is possible at electron energy of 200 MeV and bunch length 50 fs, which is accomplished in tracking simulation.
- Pulse duration of X-ray is **100 fs 1 ps**.
- Electron transverse beam size is much smaller than the focus size of focused CSR.

Gamma-ray at 5 GeV-ERL

TABLE II: Optical cavity scheme in 5-GeV ERL : Horizontal acceptance angle are 12 mrad for $\lambda = 60 \ \mu m$ and 9 mrad for $\lambda = 20 \ \mu m$ for mode matching. Bandwidth of the on-axis γ -ray is considered to be $\Delta \lambda_{\gamma} / \lambda_{\gamma} \sim \Delta \lambda / \lambda \sim 0.1$ (10%). Pulse duration of the γ -ray is same as σ_z/c .

Electron	σ_z/c	Spot size	\mathbf{CSR}	Κ	γ -ray	N_{γ}	N_{γ}
Charge [nC]	[fs]	$[\mu m imes \mu m]$	energy [mJ]		energy [MeV]	[phs./pulse]	[phs./s]
1	30	100×100	80	0.56	8	$3 imes 10^8$	3×10^{16}
0.5	10	30×30	65	0.87	25	4×10^8	$0.7 imes 10^{17}$

- Number of photons of gamma-ray (b.w.10%)
 - Number of photons per pulse : ~ 10^8 phs/pulse .
 - Flux : ~ 10¹⁷ phs/s.
- Most powerful gamma-ray source is achieved at FEL-ICS in Duke univ. : ~ 10¹⁰phs/s (10 MeV) [IPAC 2010].
- For what is the intense gamma-ray used?
 - For nuclear and neutron experiments ?
 - Generation of positron for ILC
 - 10¹² phs/pulse gamma-ray with 10MeV can be achieved by electron charge of 10 nC and bunch length of 24 fs. (Rough estimation)

Summary

- We proposed the inverse Compton scattering of CSR.
 - ERL is a nice platform for both high-intensity CSR source and inverse Compton scattering.
- Two optical schemes
 - Magic mirror : White light with pulse duration of 100 fs.
 - Optical cavity : Narrow bandwidth. Power amplification by pulse stacking is estimated almost 1000 times.
- Scattered photon expected in ERL (Optical cavity)
 - Generation of soft X-ray with energy range of 0.04-4keV is expected at 200 MeV ERL. Pulse duration is from 100 fs to 1 ps.
 - Number of photon per pulse is 10⁴⁻⁵ phs/pulse, Flux 10¹³⁻¹⁴ phs/s.
 - Intense gamma ray with 10 MeV can be obtained at 5 GeV ERL.
 - Number of photon per pulse is 10⁸ phs/pulse, Flux 10¹⁷ phs/s.