

Design and Operation Experience o f PLS-II Vacuum System

2015.01.25 Taekyun Ha, Chongdo Park

On behalf of Vacuum Group Pohang Accelerator Laboratory

- Brief description of PLS-II
- Design of PLS-II vacuum system
 - Tight space (20 IDs / 280 m)
 - High mechanical stability (BPM motion < 1 um)</p>
 - TE mode suppression
 - High power (Photon absorber, RF bellows)
- Some vacuum related experiences
 - IVU problem
 - Breakdown of MCTL (Multi Chanel Transfer Line)
 - Other faults

Location

Pohang Accelerator Laboratory

Main parameters of PLS-II

Parameter	PLS	PLS-II	Remark
Beam energy	2.5	3	GeV
Beam current	190	400	mA
Revolution freq.	1.06855	1.06377	MHz
No of bunches	300	400	
Bunch Charge	0.59	0.94	nC (Calculated)
Bunch length	30	20	ps (Designed)
Bunch current	8.86	18.74	A (Peak value)
Emittance	18.9	5.8	nm mrad
Lattice	TBA	DBA	20 IDs (10 IDs in PLS)
Circumference	280	280	m

Challenges of PLS-II

Challenges of PLS-II vacuum system

> High heat load

- 417 kW
- Complicated design of photon absorbers
- > Tight space (Compact ring & DBA lattice)
 - Be built in existing building (288 m ring)
 - Limited space for vacuum components

> High mechanical stability

- < 1 um (rms)</p>
- Ground motion
- Thermo mechanical effect

Re-installation of PLS-II storage ring

PLS

PLS-II

PLS-II timeline

° **2011**

- 25 January, PLS-II installation begins
- 23 May, Linac commissioning begins
- 13 June, 3 GeV beam
- 25 June, SR installation finished
- 1 July, First turn
- 5 July, Kicker PS accident
- 5 August, First accumulation
- 7 October, 100 mA stored
- 24 October, First photons to beamline

° **2012**

- 14 February, Commissioning with users
- 21 March, Start of operations

° **2013**

- 18, Jun, 200 mA top-up operation

° **2014**

- January, MCTL break down (2 months for repair)
- October, IVU foil bump (3 IVUs)
- December, 400 mA top-up operation

- Chamber material
 - A5083-H321 (Machined)
 - A6063-T5 (Extruded)
 - Stainless Steel 304L/316
- Photon absorber; OFHC Cu

- Roughing pump
 - Magnetic turbo + dry pump
- Main vacuum pump
 - SIP; 10 * 60 L/s
 - NEG(ST707); 19 * WP950

Playout of PLS-II storage ring vacuum system

LSBG01

- 30 vacuum pumps
 - Sputter ion pumps (30 l/s + 60 l/s): 7 ea
 - Lumped NEG (WP950 + D-400-2): 9 ea
 - NEG +SIP combination pump: 8 ea
 - Strip NEG: 5 ea
- 6 Ion gauges & 2 RGAs
- 9 Photon absorbers

Chamber & supports (Arc section)

Arc-section vacuum chamber

Cross section

Chamber supports (Short straight section)

Pressure and lifetime in the early stage

• Dynamic pressure reached to <10⁻¹¹ mbar/mA after integrated beam current of 50 Ah which is our target value.

Beam-gas scattering lifetime dominates at the early stage of commissioning. After ~50 Ah, Tousheck effect mainly limits beam lifetime.

TE mode suppression

TE mode excited in PLS SR chamber

Shunt structure to avoid TE mode in PLS-II Vac uum chamber

Design Goal

\rightarrow No resonance mode in the frequency band of 500 ± 5 MHz

Find resonance mode Using CST Microwave Studio(MWS) Shunt structure (stiffener)

→ Reduce effective width

 \rightarrow Control of frequency of TE modes

Val seal for RF contact

Holes for vacuum pumping

Bolt connection to plate

SR vacuum chamber assembled

- To control the resonance mode frequency
 - Slotted stiffeners are installed to minimize conductance reduction

TE mode measurement results

Pickup antenna on BPM electrode

No TE mode found in PLS-II operation mode until now!

Photon absorber & RF bellows

Photon absorbers in PLS-II

➤ Total synchrotron radiation power is increased from 110 kW to 417 kW.

$$P[kW] = 88.463 \cdot \frac{E[GeV]^4}{\rho[m]} \cdot I[A]$$

(17 kW per bending magnet)

✓ E=2.5 GeV, I=200 mA, ρ=6.306 m (PLS)
✓ E=3.0 GeV, I=400 mA, ρ=6.875 m (PLS-II)

Parameters for PA design

ltem♪	Magnitude >	Unit♪
Beam energy (<i>E</i>)♪	3♪	GeV⊅
Beam current (<i>I</i>)♪	400 ♪	mA⊅
Bending radius(p)	6.8775♪	m⊅
Bending magnet field (B)	1.4557♪	¢,⊤
Total power	417	kW
Beam divergence (1/gamma)	0.17	mrad

Input Parameters	Magnitude ኦ	Unit♪
Source distance	1520	mm
Incident peak power density	12.23♪	W/mm² [♪]
Rectangular approximation wid th♪	0.405	mm
Convection film coefficient	1♪	W/cm²K♪
Vertical miss-steering	±1.5 mm offset	

Materials for PA (cold forged OFHC)

Material

• The yield strength of the cold forged OFHC is enhanced up to 240 MPa.

Materials for PA (cold forged OFHC)

Lifetime measurement

- •Number of cycles to failure for total strain of 0.115 % (most severe point) in air is measured to be larger than 10,000 cycles
- Fatigue lifetime in vacuum is 10 times longer than that in air, typically.
- The lifetime of the PLS-II photon absorber is expected to be longer than 100, 000 cycles

Photon absorber in operation

- Operating temperature of the most severe photon absorber at the sensor position is measured to be 50°C at 400 mA.
- Most severe point ~ 150°C at 400 mA (much lower than the thermal analysis result)

RF shielded bellows

RF shielded bellows in operation

Thermal analysis of BPM-bellows module

- Temperature @ 400 mA (appropriate heat flux was assumed)
 - Water cooling reduces the temperature by ~30°C

Thermal analysis of BPM-bellows module

Deformation @ 400 mA

- Vertical displacement of the BPM center w/o water cooling is ~6.6 um
- Vertical displacement of the BPM center with water cooling is ~1.4 um

BPM position monitoring

Monitoring of BPM position

Thermo-mechanical effect

VCM - Beam current dependency

Thermo-mechanical effect

Long term variation of photon beam

Ground motion

5A beam line HLS data • 5A • 5A

40

5A beam line temperature (HLS)

Vibration Measurement

Measurement Sensor

Electronics

Data Physics QUATTRO

Sensor

DYTRAN 3191A SEISMIC ACCELEROMETER SENSITIVITY 5 V/G

Matural frequency of a SR vacuum chamber

Vibration due to Linac modulator/klystron

(Operation frequency of M/K is 30 Hz)

Vibration monitored by electron BPM

(Linac modulator/klystron on&off)

30 Hz vibration peak due to modulator/klystron is also appeared at electron BPM signal

Vibration due to air fan of experimental hall

Vibration monitored by electron BPM

(Air fan of experimental hall on&off)

Air fan on (20 Hz peak is appeared)

Vibration during beam injection

(10 Hz injection kicker)

Vibration of super conducting RF cryo-module

(during liquid He drain)

Vibration of super conducting RF cryo-module

(during liquid He drain)

frequency

Vibration of cooling water pipe attenuator

(before and after attenuator passage)

Before passing the attenuator

2014.05.16 02:30, 19:40

After passing the attenuator

Frequency (Hz)

Vibration due to Air Handling Unit (AHU)

(m)

12n ·

10n-

8.0n-E

Beamline image vibration vs. mirror

Frequency (Hz)

Frequency analysis from measured image data in 6C image beamline

IVU foil bump

Beam dump due to the IVU foil bump

Damaged IVU (4C)

- 1. foil bump → image current heating → bump height \uparrow → synchrotron heating → foil melting (1,2,3 호기)
- 2. foil bump \rightarrow image current heating \rightarrow bump height $\uparrow \rightarrow$ Beam missteering (including mis-aignment) (lower foil only + cell 4,5)

SFA-IVU Cu/Ni foil damage (4C_upstream_lower magnet array)

Damaged IVU (5C)

SFA-IVU Cu/Ni foil damage (5C_downstream_lower magnet array)

Inside of the IVU20

Uneven Cu/Ni foil

Side view

(Picture taken before assembling)

IVU trouble in NSRRC

Bump on the magnet foil after baking (Before operation)

Scenario of an avalanche meltdown due to a beam-induced heat load

IVU trouble in SSRF

Because the copper foil drum up, this scratch may be cut by beam

Reinstalled the block to make the copper foil smooth

Repair status

- ➤ Cu/Ni foil (50 um/50 um thickness) has been arrived from NSRRC.
- ➢ IVU20(4C) in the SR tunnel was replaced with pre-ID chamber.
- ➢ IVU20(4C) has been moved to Support Bldg.#2 for repair. (2015.01)
- IVU20(4C) will be reinstalled in 2015.08 (summer shutdown)

Storage Ring Tunnel

Support Bldg. #2

MCTL break down

VB_T

4283

Leak Detecting Procedure

- 1. Place two He leak detectors(HLDs) on the LN2 line and inject He g as into MCTL pipe or vice versa.
- 2. Check the He detecting time between two HLDs.
- 3. The leakage is nearer to the HLD which detects He first. (If the pre ssure in the LN2 pipe is uniform, then the He diffusion velocities ar e equivalent)
- 4. If the time difference is negligible, inject little amount of N2 gas into the LN2 line to increase the He diffusion time in the line. Then che ck the time difference again.
- 5. Change the N2 background pressure in the LN2 line to confirm the He arrival time delay.
- 6. If the pressure of LN2 line is too high then we have severe pressur e gradient in the pipe (because two HLDs are pumping at different places). In this condition the He diffusion velocity is not uniform. Th is cause an error.

No	P (LN2 line)	t1	t2	
1	< 0.01 mbar	16 sec	16 sec	
2	< 0.05 mbar	12 sec	20 sec	 Leakage is nearer to VB#2 than VB_#3 HLD: He detector VB: Valve box
3	< 0.1 mbar	13 sec	35 sec	

Damaged bellow

LN2 line spacer must be at upstream of LN2 flow, but it is at downstream.

Other vacuum related events during PL S-II operation

Leakage in injection section (after fire)

(2011.10)

Weld join of bellows was corroded by particles produced during fire

Abnormal pressure in an IVU

Pressure Distribution along the Ring 1E-6 🚽 90 mA (beam dose of 2.5 AH) 0 mA 1E-7 1E-8 P (torr) 1E-1E-10 1E-11 #01 #03 #05 #07['] #09 #11 #12 Position (cell number) Pressure high at 7A IVU 7A (ADC) 7C (SFA) 1E-6 pressure (torr) 1E-7 -1E-8 -1E-9 -2011-10-09 18:53:34 2011-10-15 13:46:57 2011-10-21 08:42:45 2011-10-27 03:36:42 time

(2011.10)

Thermocouple malfunction

(2013.06)

Beam was dumped due to the malfunction of a thermocouple out of 720 ea

Any recommendation to prevent this?

Gauge controller malfunction due to sag

Old Ion gauge controller (GP307)

Instantaneous voltage sag → gauge controller emission off →

Analog output sent 10 V signal -> Machine Interlock System triggered

→Gate valve closed → beam dump

(The controller being in trouble was changed then it became O.K.)

Thank you for your attention!