Design of PLS-II Superconducting RF System

Heung-Sik Kang On behalf of PLS-II RF group

Pohang Accelerator Laboratory

Content

- 1. Introduction
- 2. Physics design
- 3. Cryomodules
- 4. Cryogenic system
- 5. High Power RF
- 6. Commissioning Plan

PLS-II Project

Parameters	PLS	PLS-II
Energy [GeV]	2.5	3.0
Current [mA]	200	400
Emittance [nm-rad]	18.9	5.9
Circumference [m]	280.56	281.82
Revolution frequency [MHz]	1.068	1.0638
Harmonic number	468	470
Electron energy loss / turn from dipoles [KeV]	548.4	1042
and insertion devices [KeV]	160	616
Beam loss power by synchrotron radiation [kW]	142	663.3
RF frequency [MHz]	500.082	499.973
Cavity type	NC	SC
No. of RF cavities	4	3 (2)
Accelerating Voltage [MV]	1.6	4.5 (3.3)
No. Insertion devices	10	20

Design Parameters

Parameters	Values	Unit
Required RF Power (Rad. + HOM)	670	kW
Number of SRF Cryomodules	3 (2)	set
RF Voltage	4.5 (3.3)	MV
RF Voltage per cavity	1.5 (1.65)	MV
RF Frequency	499.973	MHz
RF acceptance	2.8	%
Number of power amplifiers, 300kW-class	<mark>3</mark> (2)	set
Required RF power per Cavity	223	kW
Cryogenic Cooling Capacity @4.5 K	700	W

- Baseline design: Three Cryomodules

- Two Cryomodules will be installed due to budget limitation.

Role of RF system

- supply sufficient energy to the electron beam to make up for power losses to synchrotron light in the dipoles and insertion devices
 - PLS: 2.5 GeV/ 200mA \rightarrow 150 kW
 - PLS-II: 3 GeV / 400 mA \rightarrow 670 kW
- Suppress Instability to store high current beam up to 400 mA
- The control errors of RF gap voltage, phase and frequency from the low-level RF system must not affect the orbit stability of electron beam.

Major Devices

1. RF Cavity

- Super-conducting or normal conducting
- Factors considered in choosing the cavity type
 - Beam stability
 - System reliability
 - Availability of ID space in SR tunnel
 - Budget & installation space
 - Vision for future

2. Power Source

• <u>Klystron</u>, IOT, or solid state amplifier

3. Low-Level RF System

Digital or analog

Layout of SRF System

Schedule

		_	2	009				2010				201	11								20	012							2013										
	07	08	09	10	11	12	1/4	2/4 3/4	4 4/4	4 1/4	2/4	3/4	10 1	1	12 0)1 (02 (03	04	05	06	07	08	09	10	11	12	01	02	03	04	05	06	07	80	09	10	11	12
Building Preparation																								Τ	Τ														\square
Existing building	Sp	pace cle	ar (Cabl	e and pip	ping mov	emer	nt)			2/E				A	II bui	ildin	ıgs a	nd s	space	es fo	or RF	Fsys	tem	are	reda	ay											\square		\square
New BldgHe refrigerator							13 N	Nonths	,																														
New BldgCompressor							13 N	Aonths																															
																																		-					
Procurement Process																									Τ					\square	Τ	Τ	T						
Issue RFP		15. Aug																													\top		\top	\square			\square	\square	
Submit Vendor's Proposal			20. Sep)																					\top						\top		\top	\square	\square		\square		
Review, negotiation and				20.04																			\square	\top	\top	\top	\top	\top	\square	\top	+	1	+	\square	\square				
selection of supplier				50. Oct																																			
Contract					20. Nov																																		
He refrigerator					1	7 7			1.															Τ	Τ														
Delivery						Ι Γ	VI()nt	n s	5																										'		1	
Installation										_	ЗM																												
Commissioning & tuning												41	м												Τ					Γ									
Start service																																							
#1, #2 Klystron & HVPS					T 14	1 1	Ла	nt	h														Ι	Τ	Τ			Τ		Γ	Τ	Τ	T						
Delivery						• •		/110																												'		1	
Assembly & Test										#1	#2	#3																									\square		
Start Service, #1															For I	NC	Cavit	y #3	3, 4											F	or S	с са	wity	#1					
Start Service, #2															For	Con	iditio	ning	g SC	#1,	#2									F	or S	C Ca	avity	#2					
			2	009				2010				201	11								20	012			2013														
	07	08	09	10	11	12	1/4	2/4 3/4	4 4/4	4 1/4	2/4	8/4	10 1	1	12 0)1 (02 (03	04	05	06	07	08	09	10	11	12	01	02	03	04	05	06	07	80	09	10	11	12
#1. #2 Cryomodules						-			r	41														\top	\top					\square	\top		\top		\square				
Delivery							Z 4		LO	nt	ns																									'			
Test & Conditioning	+							1	1								9 M	lont	hs		-			+	+	+	+	+	+	+	+	+	+	+	\vdash	\vdash	\vdash	\vdash	\vdash
Installation in tunnel	-		<u> </u>	<u> </u>					+	+		\vdash												-		+	+	+	\vdash	+	+	+	+	+	\vdash	\vdash	\vdash	\vdash	\vdash
Commissioning with beam	+		<u> </u>			\vdash			+	+		\vdash	-	+	+	+	+	-		-	-			1		-	-	-	-	┢	<u> </u>	<u> </u>	<u> </u>	<u> </u>		\vdash			
commissioning with beam	+		<u> </u>			\vdash			+	+		\vdash	-	+	+	+	+	-			-	+	N	+		Т	Т	Т	1	—	—	—		—	┝	\vdash	-		
																							⊢								<u> </u>	—		<u> </u>	<u> </u>	<u> </u>	<u> </u>		
Vertical Test Facility													-												┢					Τ	<u> </u>	—	—	<u> </u>	—	<u> </u>			
Design (Cryostat LLRE Data -	-	sition)		4 Mar	nths				+			\vdash	+	+		+	+				-	-	-	+		+	+	+	+	+	+	+	+	+	\vdash	<u> </u>	\vdash	\vdash	\vdash
Construction test operation	- qui	sicionij		- 14101	1112	8 M-	othe					\vdash	+	+	-	+	+				-		-	+		+	+	+	+	+	+	+	+	+	\vdash	\vdash	\vdash	\vdash	\vdash
Operation	-						- Auris														1	1		1		-	1	1	1	-	_	_	_	-	L		L		-
operation																									-														
Courses date #2				hurier D	cian 10	Mari	the		n ai a	oorin	Der	rian -	10.14	le në	he				C.L	hnian	tio-	12	Mer	nthe					art	0.0	and:	tioni		_	In	tall		ani	
Cryomodule #3	-		P	Invsits De	esign, 10	Man	unis ula	5	ngin n Di	eening	12.4	sign, .	10 M	onti	115	- la si		. 11	rat E M	onca	aon	, 12	MOI	ntris		τ.			est	acco	anan	uonii	-9 	-	Ins	can		ervic	e.
Klystron & HVPS #3			E	ectric De	esign, 10	Mont	ins	En	g. De	esign,	12 0				Fa	DIN	atio	n, 15	o IVIC	onth	S					res	el.						Ser	vice					

PHYSICS DESIGN

SRF cavity in synchrotron radiation facilities

Light Source	E (GeV)	l _b (mA)	Vc (MV)	P _b (kW)	Cavity type	Numbers of Cavity	Cavity design power (kW)	Cavity operat ing power (kW)
BEPC-II	2.1	250	4		SRF	2		
Diamond	3	300	4	536	SRF	2	300	110~190
CLS	2.9	250~ 320	2.4	245	SRF	1	300	250~320
SSRF	3.5	300	6	566	SRF	3	250	120
TLS	1.9	300			SRF			
TPS	3	400	4.8	720	SRF	4	180	
PLS-II	3	400	4.5	670	SRF	3	223	
NSLS-II	3	400			SRF	3		

Requirements of RF System

- 1. No coupled bunch Instabilities \rightarrow SC RF
 - Instabilities become a big issue in high current operation (400mA)

Synchrotron Light Sources using SC RF : TLS, CLS, SSRF, DLS TPS and NSLS-II decided to use SC RF.

2. Stable operation

– MTBF of RF system: > 6 days

3. Low RF amplitude and phase jitter \rightarrow Digital LLRF

- PLS-II lattice has a big dispersion at the straight section
- Orbit variation due to RF jitter could be a problem
- phase: 0.35 deg, amplitude: 0.75%

Higher-order modes in RF cavity

PLS RF cavity: NC

PLS-II RF cavity: SC

HOM freq [MHz]	R/Q	Q _{load}	Rsh [Ohm]
1081.3	2.42	201	486
2932.3	0.75	471	353
4127.9	0.69	1267	874

 $Rsh~:~300~k\Omega~\sim 1~M~\Omega$

CBI growth rate of PLS-II SC cavity

• To get an instability-free state, the instability growth rate should be smaller than the damping rate

			Dampi	ing time	Damping ra	te [/sec]	
	Horiz	ontal	2.0	062 ms	-	- 485	
	Verti	cal	2.	707 ms	-	- 370	
	Long	itudinal	1.0	604 ms	-	- 623	
HON frequer [MHz	/I ncy z]	Dire	ection	R/Q	Q _{load}	Mode number	Growth rate [sec ⁻¹]
1081	081.3		ong.	2.42	201	75	4.5
4127	.9	Lo	ong	0.69	1267	115	6.6
679	.4	Tra	ans.	165.2	78	299	1.6
1138	.5	Tra	ans.	38.7	22	333	0.22

RF Power Budget of PLS-II

HOM loss: 5 kW, waveguide loss: 10 kW, Safety margin: 25 kW, Available maximum power delivered to beam from 300 kW klystron is 26**0 kW**.

With two cryomodules, 210 kW is required to compensate dipole radiation loss at 400 mA current

RF system amplitude and phase requirements

Dispersion at long straight section : 210 mm

RF system amplitude and phase requirements

The obit variation induced by the momentum jitter is

$$\frac{\Delta p}{p} = \frac{w_2}{h\alpha} \Delta \varphi$$
$$\frac{\Delta V}{V} = -\frac{\cos \varphi_2}{\sin \varphi_2} \Delta \varphi$$

Synchrotron tune, v_s	0.00993
Harmonic number, h	470
Momentum compaction factor, α	0.001307

 $\Delta_{x,y} = \frac{\Delta p}{p} \eta_{x,y}$

Orbit variation should be smaller than 10% of the horizontal and vertical beam size

	PL	S-II	F	PLS
	Vertical	Horizontal	Vertical	Horizontal
beam size	11 µm	248 μm	35	455 μm
10 % beam size	1.1 μm	25 µm	3.5	45.5 μm
Dispersion	5 mm	250 mm	5 mm	20 mm
∆p/p limit	1.1 μm /5 mm = 2.2 x 10 ⁻⁴	1.0 x 10 ⁻⁴	7.0 x 10 ⁻⁴	
Δφ limit	0.78°	0.35°	5.9°	10°
ΔV/V limit	0.029	0.0075		

Performance of cryogenic system in SSRF

- System Reliability of SRF is not so good as NC RF System
- Power handing capability of Input power coupler
 - CESR (500 MHz) was tested up to 450 kW CW, operated at 300 kW
 - CLS cryomodule recorded up to 320 kW, operated around 220-230 kW
 - KEKB (508 MHz) tested up to 800 kW CW, operated at 400 kW

• Multipacting

- There is a multipacting zone between **130 160 kW in** DLS Cryomodules.
- DLS is operating two cryomodules at **110 kW** and **200 kW**, respectively to escape the multipacting zone.

SRF System Reliability

PLS RF System Reliability

	2007	2008
User service beam time	4680 hrs	4680 hrs
RF fault time	48 hrs	5.8 hrs
RF fault number	41	12
MTBF	4.7 days	16.2 days

achieved by preventive & good maintenance of KSU
the same in 2009

SRF System Reliability

Light Source	MTBF
SSRF	2.5 days
Diamond Light Source	4.2 days
KEKB	> 10 days

Specifications of SRF Cryomodule

Main Spec.

- $Q_0 > 1E9$ @ Vacc ≤ 2.5 MV for Vertical test
- $Q_0 > 0.5E9$ @ Vacc ≤ 2.0 MV for Horizontal test.
- Qext = 1.7E5 +/- 0.2E5
- Frequency tuning range > ±200 kHz with resolution of 10 Hz

Window:

- 350 kW in traveling wave cw .
- 125 kW standing wave cw at full reflection,
- 500 kW in traveling wave at >20% duty cycle.

65 kW → 2.0 MV 44.5 kW → 1.65 MV

The straight section for SRF Cryomodules is 6289 meter long.

Reflected RF Power

NSLS-II: Qext = 65,000 for better Robinson damping KEKB: Qext = 70,000

Cavity Coupling vs. tongue

3-stub Tuner is required to tune for all beam loading conditions

CRYOMODULES

Specifications of Available SRF Cavities

Specification	CESR-III	KEK-B
Resonant frequency [MHz]	499.765	499.8
R/Q [Ω]	89	95.3
Q ₀	>7×10 ⁸	109
Operating Temperature [K]	4.5	4.5
Accelerating Voltage / Cavity [MV]	>2.5	>2.0
Max. RF Power / Cavity [kW]	320	400
HOM Removal	Absorber	Absorber
Input power coupler	Waveguide	Coaxial

SC Cryomodule

CESR-B Type

Cryomodule length: ~2.86 m Input power coupler: Waveguide type

TLS, CLS, DLS, SSRF

KEK-B Type

Cryomodule length: ~3.7 m Coaxial type

BEPC-II, KEKB

CSER-B type

Q = wU/P

KEK-B Type SC Cryomodule

- Characteristics
 - Coaxial input power coupler, 350-400 kW
 - Frequency: 508 MHz
 - Beam tube diameter L/S: 300/220 mm
 - TM011 HOM damping with LBP
 - Cryomodule length: ~3.1 m
- Characteristics of coaxial power coupler
 - More compact, but more complicated
 - Smaller heat leak
 - Variable coupling possible
 - Biasing to suppress MP possible
 - Gas He and water cooling

Proposed Version for PLS-II

PLS-11

KEKB cryomodule for BEPCII

built by Mitsubishi Electric Corporation.

Vertical Tests of BEPC-II Version

PLS-II

T. Furuya, et al, SRF2007, Beijing

Cryomodule arrangement (CSER-type)

Two CESR-type cryomodules in a long-straight section.

Cryomodule Arrangement (KEKB-type)

Using the TPS design of KEK-B cryomodule

Length of KEKB Crromodule

Collaboration with IHEP in Beijing

BEPC-II of IHEP: SC module of 500 MHz

- Upgrading of BEPC (Beijing Electron Positron Collider). collision mode: 1.89 GeV, 910 mA + 910 mA SR mode: 2.5 GeV, 250 mA
- Use of SC cavities based on KEKB cavity.
- Because of a difference of RF frequency, a slight modification was given to the equator straight. (13.3 r

Parameters of Cavity Shape

 Frequency 	(MHz)	499.8
 Accelerating gap 	(mm)	267
 beam pipe diamet 	er (mm)	220
•Large beam tube d	liameter (mm)	300
•R/Q	(Ohm/cavity)	95.3
 Loss factor 	(V/pC)	0.075
•Esp/Eacc		1.87
• <i>H</i> sp/ <i>E</i> acc	Gauss/(MV/m)	41.1

ILC-DR, KEK December 19, 2007

CRYOGENIC SYSTEM

Cryogenic Heat Loads

Sources and parameters	Value	Unit
Number of SRF Cryomodule	3	-
SRF Cavity Static Heat Load	30 × 3	W
SRF Cavity Dynamic Heat Load @1.7 MV	65 × 3	W
Cooling Input Power Coupler (require LHe flow)	6 x 3	Liter/hour
Distribution Valve Box	30	W
L He Transfer Line (Length: 35 m +15 m x 3)	80	W
L He Dewar (2000 liter)	30	W
Estimated Heat Load from main SRF modules	425	W
Total Heat Loads	425 18	W Liter/hour
Machine capacity Margin	50	%
Required Capacity of He Refrigerator	700	W

Parameters of a PLS-II cryomodule cooling system

Parameter name	Value	
Cavities per cryomodule	1	
Helium circuit static heat load	~30 W	
Helium circuit dynamic heat load	$< 70 \mathrm{W}$	
Pressure in helium vessel	1220 ± 3.0 mBar	
Temperature in helium vessel	4.5 K	
Helium liquid level tolerance in helium vessel	1.0 %	
Pressure of the helium liquid circuit supply	~1.28 Bar	
Maximum allowable pressure in helium vessel	1.49 Bar	
Relief pressure in helium vessel	1.35 Bar	
Temperature of the nitrogen circuit gas supply	77 K supply	
Nitrogen input	< 2 g/s (100 l/min.	
Pressure of the cooling water supply	8.0 Bar	
Temperature of the cooling water	25 °C ~ 35 °C	
Pressure of the cooling water return	4.0 Bar	
Water flow at HOM dampers	> 3 l/min	
Water flow at RF window	> 11.5 l/min	
Water flow at tapers	> 3.0 l/min	
Water velocity	2 m/s	

PLS-11

Pink Line: Underground Tunnel for utility like piping, wires

Proposed Layout of He Facility

Capacity of 700 W Cryogenic System

- Minimum of 450 W Refrigerating capacity at 4.5K without LN2 Pre-cooling.
- Minimum of 18 L/h liquefying capacity at 4.5K with LN2 Precooling
- Minimum of 715 W Refrigerating capacity at 4.5K with LN2 Pre-cooling

MCTL Design

HIGH POWER RF & LLRF

High Power System

Scheme of power transmission

- Baseline design: Klystron
- Specification of power transmission

# of Amplifier/HVPS	3
Waveguide	WR1800
Circulator	~350kW
Amplifier	300kW klystron
HVPS	55kV/10A

1. Commissioning phase: New 2x300 kW amplifiers and 4 NC cavities

PLS-11

2. Design with 3 SC RF system: New 3x300 kW amplifiers and 3 SC cavities

300kW High Power System of SSRF

COMMISSIONING SCHEME & MILESTONE

Commissioning Plan

Period	Cavity	RF power source	RF voltage	Available RF Power for beam	Beam Current [mA]	Touschek lifetime [hrs]	
2011. 7 – 2012. 7	NC: 4 ea	300 kW: 1ea 75 kW: 2 ea	0.55 x 2 = 1.1 0.45 x 2 = 0.9 Total = 2 MV	70 x 2= 140 35 x 2 = 70 Total = 210 kW	200 mA (without ID)	> 7 hrs	
2012. 8 – 9	Two SC Install Dismantlement of Two NC						
2012. 10 – 2013. 7	SC: 2 ea NC: 2 ea	300 kW: 2ea 75 kW: 2 ea	1.65 x 2 = 3.3 0.45 x 2 = 0.9 Total= 4.2 MV	260 x 2= 520 35 x 2 = 70 Total=590 kW	400 mA (without ID)	> 25 hrs	
2013. 8 - 9	Third SC Install Dismantlement of Two NC						
2013. 10 ~	SC: 3 ea	300 kW: 3ea	1.5 x 3 = 4.5 Total= 4.5 MV	260 x 3= 780 Total=780 kW	400 mA (with ID)	> 20 hrs	

Commissioning Phase

Hybrid RF System Phase

Final SC Phase

Thank you for Listening