Recent activities at Jefferson Laboratory - Progress of the new SRF facilities and CEBAF 12GeV upgrade cavity results

Dr. Ari D. Palczewski – SRF Research & Development Scientist

Part 1 New TEDF/SRF Development Facilities

- •TEDF project buildings
- Design goals
- New facility foot print
- Workflow improvements
- New clean and chemical room design

Part 2 – CEBAF 12 GeV SRF Upgrade Cavity Testing Results

- CEBAF overview
- •12GeV upgrade cavity design
- Cavity processing
- •Full VTA cavity tests results with FE

Thomas Jefferson National

Accelerator Facility

Newport News, Virginia

39°51'28.00" N 96°07'33.60" W

Jefferson National Laboratory (JLAB)

Department of Energy (DOE) single function Laboratory – Nuclear physics

- One of 17 national labs in the United States
- ~700 employee's (~1000 during construction/12GeV)
- ~1300 visiting scientist a year
- CEBAF (continual electron beam accelerator facility) – nuclear physics 5 pass racetrack dual LINAC
- Free electron laser 14.2 kilowatts of cw light at 1.6 microns (100W @ 363nm)
- Full functional Superconducting Radio Frequency(SRF) cavity processing facility

Jefferson Lab Technology and Engineering Development Facility Project (TEDF)

TED building 2012

A DOE Science Laboratory Infrastructure modernization project

Provides the first 2nd-generation SRF facility in the world

New SRF lab TLA (Addition) 2012

Renovated SRF Test Lab (TL) 2013

TED extension/addition building

Replaces temporary building and rental offices

- Temporary home of SRF during test lab renovation (through summer 2013)
- New home for Engineering staff
- New home for some Cryogenic staff
- New home for some accelerator support staff
- New home for electronics assembly and design

TEDF Project- SRF TLA/Addition

- Department of Energy "Science Laboratory Infrastructure"
 Project
- Investment in facilities for:
 - Improved energy efficiency
 - Improved safety code compliance new building
 - Improved human work environment- lighting and ergonomics
 - Increased build out capacity future projects
 - Improved technical quality of facilities for future work
 - Improved work-flow efficiency

SRF Work Centers in Test Lab – OLD design

SRF Work Centers in New Test Lab

Chemistry and Ultra pure water

Upgraded chemical management and waste treatment systems

- Semi-automatic bulk chemical delivery systems to tools
- Upgrade chemical wet stations
- Use of double containment and valve manifold boxes for safety
- Automated neutralization system

Upgraded ultrapure water system

Centralized Bulk Chemistry neutralization

- Extension building dedicated for neutralization only
- Single building for R&D and production
- Fully automated neutralization and monitoring

Back of chemical room

New clean Room facilities

Upgraded clean room space to ISO-4 (all class 10 assembly)

- 100% HEPA coverage, RMF, laminar flow with return plenums
- Bay/Chase concept
- Dedicated Drying & Assembly chambers
- Modular wall systems

Expanded cryo-module assembly area

- Upgraded cryomodule assembly space
 - Additional rails to allow for simultaneous C50, C100, and R&D assemblies

Expect great thing in 2013 after construction is complete

Part 1 questions?

12 GeV Upgrade cavity 7 cell low loss fabricated by Research Instruments (RI -Germany)

Spec - 19.2MV/m below 29 watts (Q=7.2*10^9)

12 GeV Upgrade Cavities

- Production process press for <u>reliable efficiency</u>
 - 160 μm BCP etched and pre-tuned by vendor
 - Receipt inspection mechanical and RF
 - Bake: 600 C, 10 hrs
 - EP: 30 μm, @20°C regulated by external water spray/degrease
 - Tune
 - Helium vessel welding
 - Flange lapping/degrease
 - HPR
 - Partial assembly
 - HPR >> dry in Class 10 cleanroom
 - Final assembly, leak check
 - Bake: 120° C, 24 hrs
 - Vertical test @ 2.07 K
 - HPR >> dry in Class 10
 - String assembly

CEBAF 12 GeV project cavities

Full cavity statistics all VTA cycles

Cavities which did no meet spec - defects

c100-26 cell 5

Only 1 cavity was quench limited below spec by original manufacturing defect

Cat eye

c100-8 iris 2-6

Accidental Cavity scratch from HPR

Field Emission Statistics – vertical qualification test

- Field emission monitored above the top plate of the Dewar within the shield lid. – 6 feet above and 3 feet off axis
- Data take every 0.3 seconds Canberra IP-100 area monitor
- Continually monitored and data logged
- Our radiation is monitored in mRad/hr (i.e. mRad/hr=10µSv/hr)
- VTA operator complies data after each test and places individual cavity results into centralized database

Average = $190 \mu Sv/hr$ in VTA

12GeV - Cryomodule data

- Modules 1 and 2 installed in 2011 both have worked at spec of (108.2MV) with beam
- Modules 3 and 4 are complete and in the tunnel
- Modules 5 and 6 are complete and awaiting test
- Modules 7-10 are at various stages of completion, but all strings are fully assembled under vacuum
- Final instillation slated for 2013 with full operations by end of 2014 16 month shutdown just started May 2012
- Field emission test data for Cryomodule expected early 2014

Other SRF Projects

- FRIB:
 - Committed to do processing of all half-wave cavities
 - In discussion full cryomodule design, assembly, and testing
- APS construct crab cavity prototype
- Project X designed, constructed and tested new 650 MHz cavity shape to minimize multipacting
- Next Generation Light Source collaboration w/LBNL, FNAL, SLAC
- ILC leading gradient improvement effort CBP/VEP/FE mapping
- BES inverse compton scattering source developing technology
- European Spallation Source in negotiations re spoke cavity R&D

Special Thanks

- Entire Jefferson SRF Institute technical and production staff including Scientist and VTA operators for individual FE statistics
- Jonny Jeung for FE database analysis
- Charlie Reece and Tony Reilly for TEDF slides

Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177

12 GeV Upgrade Cryomodule

Installation of super-insulation on upgrade cryomodule

Improved Technical Quality of Facilities for Future Work From Air Handlers

- Upgraded clean room space to ISO-4 (all class 10)
 - 100% HEPA coverage, RMF, laminar flow with return plenums
 - Bay/Chase concept
 - Dedicated Drying & Assembly chambers
 - Modular wall systems
 - Cavity string air lock
- Upgraded chemical management and waste treatment systems
 - Semi-automatic bulk chemical delivery systems to tools
 - Upgrade chemical wet stations
 - Use of double containment and valve manifold boxes for safety
 - Automated neutralization system
- Upgraded ultrapure water system
 - Specified to meet ASTM Type E-1.1 (18.2 MΩ)
 - Centralized Hot UPW system

Upgraded cryomodule assembly space

Additional rails to allow for simultaneous C50, C100, and R&D assemblies

HEPA

Filters

Clean Room

Perforated

Raised Floor

TEDF SRF Infrastructure Design

30,000 sq foot – all new

RF structure development

Cavity fabrication (presses, EBW...)

QC/Inspection

Integrated cleanroom suite

- Production chemroom
- R&D chemroom
- Flexible ISO 4 assembly areas
- Clean material analysis lab

New materials R&D lab

Dedicated CEBAF-support CM assembly lines

Expansion assembly space for other DOE project support

12 GeV vertical test - all upgrade cavities 80 needed for project

Jefferson Lab 12 GeV C100 Cavity Final Emax

86 cavities

Improved Work-Flow Efficiency – next 2 slides

- Improved work flow of SRF work centers by consolidating to Test Lab Addition (TLA)
 - All work centers placed on first floor level
 - SRF machine shop, presses, tech shop, and electron beam welder consolidated in one area
 - Brazing and vacuum furnaces moved to one room
 - Parts clean & etch, R&D chemistry co-located to east end of TLA with improved integration with clean room
 - Consolidated R&D labs
 - Vertical attach clean room isolated from main ISO-4 clean room used for cavity processing and assembly via an air lock
 - Longer dedicated cryomodule assembly rail systems to enable simultaneous activities

