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The Relativistic Heavy Ion Collider RHIC

• Two superconducting storage rings

• 3833.845 m circumference

• Energy range 25 - 250 GeV polarized protons, or 10 - 100 GeV/n
gold

• Virtually all ion species, from (polarized) protons to uranium

• Two collider experiments, STAR and PHENIX

• Siberian snakes to preserve proton polarization on the ramp

• Spin rotators to manipulate spin orientation at IPs

• Operating since 2000



Electron-ion collider physics



Electron-ion collider design studies

Electron-ion collider design studies are being pursued at

two labs:

• JLab: Figure-8 ring-ring design, based on CEBAF as

electron injector (JLEIC)

• BNL: ERL-based linac-ring design, based on existing

RHIC facility (eRHIC)

(An early version of eRHIC in 2003 proposed adding a small

circumference 10 GeV electron ring)

Both designs use novel high-risk techniques



The eRHIC linac-ring design



• Up to 1E34 luminosity

• Multi-turn energy recovery linac (ERL), with 2GeV

650 MHz RF section

• 50 mA polarized electron current from multiple guns, or

multiple cathodes in common vacuum (“Gatling gun”)

• Fixed-field alternating gradient arcs (FFAG) - very tight

focusing to allow simultaneous transport of beams with

vastly different energies

• Coherent electron cooling (CeC) - hybrid between elec-

tron cooling and stochastic cooling, using an electron

beam as pick-up and kicker, and an FEL as amplifier



Two paths of risk reduction in eRHIC

• Staged linac-ring approach, initially limiting number of

new technologies

• Ring-ring design using a 20 GeV electron ring in RHIC

tunnel, largely based on existing technology

Risk-reduction effort started in 2015

Either approach aims at an initial luminosity in the 1E33

range



Ring-ring design goals

• Low-risk approach

• Full energy range (up to 250 GeV protons on 20 GeV

electrons) from the beginning

• Full physics reach in terms of interaction region design

• 80 percent electron polarization, 70 percent proton po-

larization

• Baseline design luminosity around 1E33

• Luminosity upgradeable towards 1E34



Beam parameters and luminosities

• 360 bunches (requires in-situ beam pipe coating and
new injection kickers; now 120)

• Normalized proton emittance ǫn,p = 2.5µm (achieved
in RHIC)

• Proton rms bunch length σs = 20cm (achievable in
RHIC at 250 GeV; requires electron cooling at low en-
ergies)

• Electron emittances ǫx,e = 53nm, ǫy,e = 9.5nm

• Proton β-functions β∗
x,p = 2.16m, β∗

y,p = 0.27m at all
energies, 50 - 250 GeV



• Proton beam-beam parameter ξx = 0.015, as routinely

achieved in RHIC

• Maximum proton bunch intensity Np = 3 × 1011 (25

percent higher than achieved in RHIC)

• Electron beam-beam parameter: ξy = 0.1, with a damp-

ing decrement of δ = 2 × 10−3

(Note: KEKB reached ξy = 0.12 with ten times smaller

damping decrement)

• Use damping wigglers to increase damping decrement

at electron energies below 20 GeV



Synchrotron radiation power losses

• Technical limit for linear synchrotron radiation power

loss is 10 kW/m in the arcs

• With a total RHIC arc length of 2π · 380m = 2390m,

that corresponds to 24 MW of RF power

• Typical klystron efficiency is about 60 percent, so we

would need 40 MW of electrical power for the RF alone

- very high operating cost

Design based on 10 MW RF power



Luminosity curves for 10MW RF, ξmax = 0.1
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• Limited RF power reduces luminosity at high electron energies

• Limited electron beam-beam parameter reduces low energy luminosi-

ties

• Flattop due to proton bunch intensity cap at 3 × 1011

Curves corrected for hourglass effect, crab crossing, and abort gap



Parameters for highest luminosity

electrons protons

energy [GeV] 13.7 250

bunch intensity [1011] 2.1 2.1
beam current [mA] 935 935
emittance h/v [nm] 53/9.5 9.5/9.5
β∗ h/v [m] 0.38/0.27 2.16/0.27
beam-beam parameter 0.1 0.015
RMS bunch length [cm] 1 20
polarization [%] 80 70

luminosity [cm−2 sec−1] 1.2 · 1033



IR design requirements

• ±4.5m element-free space around IP

• Unobstructed path for ±4mrad neutron cone in forward

proton direction. Dipole magnet to separate neutrons

from charged particles.

• ≈ 2m space for “Roman Pots” to detect protons with

very small scattering angle, transverse momentum ac-

ceptance of p⊥ ≥ 200MeV/c

• Design aperture 10σp for protons, 15σe for electrons



IR layout (top view)
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4 mrad neutrons
10 sigma protons

15 sigma electrons
magnets

• Full dogleg and > 2m space for Roman Pots

• 15 mrad crossing angle with crab cavities

• Proton magnet apertures allow the same β∗ at all energies down to

50 GeV



Electron ring lattice

• High dipole packing factor to limit synchrotron radia-

tion power - FODO lattice

• 53 nm horizontal emittance for collisions with 250 GeV

protons, tuneable to 106 nm for 50 GeV protons, over

full electron beam energy range 5 - 20 GeV

• 20 GeV lattice needs 90 degrees phase advance to achieve

53 nm emittance - difficult chromatic correction

• 60 degrees produce 150 nm at 20 GeV; need radial shift

and/or Robinson wiggler to reduce it to 53 nm



• Complete electron ring lattice with IR and Robinson wig-

gler for emittance adjustment

• 300 m dipole bending radius in 380 m radius tunnel

• No damping wigglers yet

• Work on chromatic correction, dynamic aperture maxi-

mization in progress



Circumference adjustment for lower hadron energies

• Proton energy range from 50 (25?) to 250 GeV re-

quires circumference adjustment to keep revolution fre-

quencies in the two rings idential

• Circumference adjustment is most easily done in elec-

tron ring, using additional beamlines at an increased

radius of ∆r = 1m over a fraction of an arc

• Required length of those arc bumps:

beam energy [GeV] ∆C [m] bump length [m]

50 0.655 294
100 0.142 75
150 0.048 35



Hadron ring crab cavities

• High RF frequency generally preferred to lower voltage

• 20 cm long proton bunches require low crab cavity RF

frequency

• Dual frequency crab cavity system, 168 and 336 MHz

to linearize crab kick

• Even harmonic numbers of 6 and 12 allow for bunch

splitting, if desired

Luminosity reduction due to hourglass effect and crab cross-

ing combined is less than 12 percent



Electron cloud

• Short bunch spacing (35 nsec) likely to result in electron cloud
instability

• LHC ran routinely at 50 nsec bunch spacing in 2012, with 1.6·1011

protons/bunch

• Electron cloud effects observed at 25 nsec; achieved 1.15 · 1011

protons/bunch while running at refrigerator capacity

• eRHIC ring-ring is just in-between, at 35 nsec

• To be studied in simulations; success with 25 nsec at LHC is re-
assuring

• In-situ beam pipe coating needed for eRHIC

• In-situ beam pipe coating is also required for LHC triplets

• CERN has successfully coated SPS pipes with amorphous carbon



Electron polarization

Ramping would destroy electron polarization

Electrons self-polarize at store due to synchrotron radia-

tion:
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Self-polarization is not viable except at highest energies

⇒ Need a full-energy polarized injector



Advantage of a full-energy polarized injector:

• Electron spin patterns with alternating polarization (as in RHIC
proton fills) are required for single-spin physics

• Such fill patterns can be generated by a full-energy polarized in-
jector

• Bunches with the “wrong” (unnatural) polarization direction will
slowly flip into the “right” orientation. Time scale given by
Sokolov-Ternov self-polarization time

• Bunch-by-bunch replacement at 1 Hz (360 bunches in 6min) yields
sufficient polarization even at full energy with τS−T = 30min

• Requires good intensity lifetime > 1h to limit beam-beam effect
of electron bunch replacement on proton bunches



Electron spin rotators

• Experiments require longitudinal polarization; spin is ver-

tical in the arcs

• Solenoidal spin rotators

• Integrated fields: B · l[Tm] = 5.24E[GeV];

26-53 and 52-105 Tm, resp.



Longitudinal spin vs. energy

• Longitudinal spin component with two solenoidal spin

rotators, optimized at 7.5 and 15 GeV:

• Detector solenoid causes additional spin rotation if po-

larization is not longitudinal.

• Using both solenoids simultaneously spin can be perfectly

longitudinal over the entire energy range

• Effect of damping wigglers on polarization and depolar-

izing effects of spin rotators to be studied/minimized



Electron injector options

1. Linac-ring style injector

• Hardware-wise virtually identical to linac-ring eRHIC

• 650 MHz recirculating linac

• FFAG arcs

• Can be converted to full linac-ring design once high-

risk items (cooling, high current polarized gun,...) are

demonstrated



2. Dedicated recirculating linac injector

• A dedicated recirculating linac (no later ERL option),
based on pulsed ILC cavities (1.3 GHz) can reach higher
gradients (35 MV/m) than ERL cavities

• 5 GeV linac seems feasible in 200 m straight section

• Higher linac energy requires fewer passes

• Fewer passes could be built as separate loops, not
FFAG

• Acceleration up to ≈ 10GeV does not require large
bending radii - small, single loop to turn 5 GeV beam
around after first pass would be sufficient



Recirculating linac injector layout

5GeV linac

polarized electron gun

2 loops around RHIC,
10 and 15 GeV

5 GeV return loop

20 GeV eRHIC electron ring

Acceleration up to 10 GeV in one 200 m long RHIC straight,

plus two recirculating loops at 15 and 20 GeV around entire

RHIC tunnel



3. Highly symmetric rapid-cycling (or rapid-ramping) syn-

chrotron (RCS)

• At 20 GeV, electron G · γ = 45.4

(G = 0.00115965219 : anomalous gyromagnetic ratio)

• Assume a circular RCS, made up of identical periods

• Superperiodicity P = 48 and a tune of ν = 48.2 results

in depolarizing resonances at Gγ = k · P ± l · ν

• Resonance condition fulfilled at Gγ = 2 · P − ν = 47.8

- outside the energy range



• High superperiodicity requires a circular ring, unlike the
RHIC tunnel with its six straights

• However, if transfer matrices of straights are unit ma-
trices

Mstraight = I,

energy range remains resonance free

 

 



Polarization in RCS with orbit errors
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• Spin tracking confirms validity of RCS concept

• 4000 turns used in simulation

• Faster ramping in only 400 turns technically feasible,

further improving polarization preservation



Leading risks

1. Electron cooling

• Required to maintain 20 cm RMS bunch length at low proton
energies (50-100 GeV)

• Without cooling, luminosity with 50 GeV protons drops by fac-
tor 3, with 100 GeV protons by 40 percent

• High energy requires bunched electron beam with RF acceler-
ation

• Low Energy RHIC electron Cooler (LEReC)) is a prototype
for bunched beam electron cooling up to 6 GeV. Installation
in progress

• Challenging design due to high proton beam energy: High en-
ergy, high intensity ERL; high intensity, low emittance electron
gun and beam transport



2. Crab cavities

• IR design with 15 mrad crossing angle requires crab

cavities to restore luminosity

• Required 168 MHz crab cavities with 7.5 MV seem

feasible

• Proof-of-principle exists at KEKB, but not for hadron

beams. Test experiment planned at SPS (CERN),

but without beam-beam interaction. To be studied

mainly by tracking.

• Eliminating the crossing angle requires a dipole field

that generates several hundred kW of synchrotron

radiation power with a critical energy of 120 keV or

more, having serious impact on detector design and

acceptance



3. Beam-beam

• eRHIC electron and proton beam-beam parameters

have been achieved in e+e− colliders and RHIC,

resp., but not in e-p collisions (HERA)

• Effect of crab crossing with long (20 cm) proton

bunches on both beams needs to be studied in sim-

ulations - in progress

• Strong-strong simulations to study coherent beam-

beam, kink instability in collaboration with LBNL

• Rapid electron bunch replacement (each bunch ev-

ery 6 minutes) introduces noise-like disturbance onto

proton beam. Requires long electron beam lifetime



4. Electron polarization

• Spin matching of IR with spin rotators seems man-

ageable - in progress

• Maintaining a large synchrotron radiation damping

decrement at all electron beam energies requires

damping wigglers

• Effect of damping wigglers on polarization unknown;

to be studied in simulations



Luminosity upgrade options

Two possible luminosity upgrade paths towards 1e34:

1. Conversion to original linac-ring design, including:

• Energy Recovery Linac (ERL)

• Fixed-Focus Alternating Gradient (FFAG) arcs

• Coherent electron Cooling (CeC)

• Multi-cathode elecron gun (Gatling gun), or multi-

ple conventional guns

To be cost effective this upgrade path requires a CEBAF-

type injector virtually identical to linac-ring eRHIC for

the ring-ring baseline



2. Ring-ring with (coherent) electron cooling and tighter

focusing:

• Electrons need to be focused to small β∗ to limit

beam-beam parameter

• Low-β quadrupoles need to be moved closer to the

IP to limit chromaticity contribution

• Biggest obstacle is the 4mrad neutron cone

Work in progress; up to 7.8 × 1033 cm−2sec−1 feasible

with “flat” proton beam emittances if cooling works at

all energies



Next steps

• Spin matching

• Damping wiggler design

• Tracking studies: Dynamic aperture, beam-beam (in-

cluding realistic crab crossing), spin (including damping

wigglers and spin rotators)

• Spin tracking in rapid cycling injector synchrotron

• Detailed crab cavity design

• Electron cooler design



Summary
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• Ring-ring approach provides up to 1.2 ·1033 cm−2sec−1

luminosity over the required energy range, depending

on beam energies



• IR design meets Physics requirements

• Low risk approach - electron cooling and crab crossing

are main technical risks

• Longitudinal electron cooling only needed for low pro-

ton energies (up to ≈ 100GeV)

• Crossing angle requires crab cavities

• Developed a preliminary electron ring lattice design.

Chromatic correction in progress



• Electron ring SC cavities similar to KEKB. Need 10 MW

at 46 MV - about 30 KEKB cavities

• Electron cloud in RHIC requires in-situ beam pipe coat-

ing. Under development at BNL and CERN

• Different electron injector options under consideration

to reduce injector cost.

If 10 GeV electrons are sufficient to get started, dogbone-

shaped recirculating linac with ILC cavities would be

most cost effective

• Multiple luminosity upgrade paths, including possible

conversion to linac-ring

Thank you!



Backup slides



Bunch intensities for 250GeV protons, 10MW power limit
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Luminosity reduction due to abort gap, hourglass effect,

and finite crab cavity wavelength not included



Electron ring RF cavities

• RF cavities have to provide 10 MW of power at 46 MV

• Assuming 30 KEKB-type superconducting cavities that

supply 2MV and 380 kW each, with h = 18 × 360,

f = 508MHz

• Cavity detuning for eRHIC beams computes as δf =

17.1kHz - significant fraction of 78 kHz revolution fre-

quency

• Feedback filtering similar to KEKB required



Proton injection kickers

• Increasing no. of bunches from present 120 to 360 requires new,
faster injection kickers

• Full bunch length of τb = 15nsec, spaced at τs = 35nsec

• Strip line kickers, L = 1.25m long give rise time
τr = τs − τb − 2L/c = 12nsec

• Deflection angle φ = 2mrad requires 16 modules for 24 GeV pro-
tons

• Present RHIC injection area needs to be modified to make room
for 25 m long kicker section

• Kicker design vetted by Pulsed Power Group

Electron injection kickers are similar; somewhat easier due to shorter

bunch length



Collective effects

• Electron beam single bunch instabilities studied using

TRANFT code

• Longitudinal and transverse impedances modeled as

resonators with Q = 1 a fres = 10GHz

• Longitudinal impedance adjusted to ℑ
(

Z
n

)

= 1Ω, trans-

verse impedance at low frequency Zx = Zy = 1.4MΩ/m

• VRF = 40MV, h = 18 × 360

Stable for 1012 electrons/bunch at 10 and 20 GeV, and for

3 · 1011 at 5 GeV



DEPOL confirms lack of strong intrinsic resonances
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Imperfection resonances
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