Performance of the PSI High Power Proton Accelerator

PAUL SCHERRER INST

Mike Seidel, Anton C. Mezger Paul Scherrer Institut, 5232 Villigen, Switzerland

Outline

motivation for this talk overview of the PSI facility [accelerator chain, cyclotrons, applications, shielding/infrastructure] generation and transport of a high power beam [cyclotrons, power conversion efficiency, losses / critical aspects, upgrade plans] reliability and trip statistics [failure statistics, involved subsystems, short trip statistics, critical elements] cyclotrons for ADS applications [comparison to LINACS, Pro's and Con's, Power and Energy Reach] conclusion

Motivation

- → overview of facility and demonstration of practical experience with high power beam operation
- show good performance at PSI [1.3MW@0.59GeV, 94% reliability]
- significant advancements in past years
- \rightarrow advertisement for high power cyclotrons
- high efficiency, compact facilities, comparably good reliability
- cyclotron concept not well known at major accelerator labs

M.Seidel, J-PARC/Japan, 7.7.2009

dimensions experimental hall: 130×50×20 m³ Ring Cyclotron: ø15m crane: @15m height, 60tons

10.000 shielding blocks in 14 shapes; heavy concrete and 30% steel; weight 32.000 tons

M.Seidel, J-PARC/Japan, 7.7.2009

FED shielding – Meson production target / 590MeV transport channel

→ elaborate shielding required

→ reliability of activated components!; water cooling; few electrical connections

Component activation in beamline up to ~300Sv/h!

-		•
	—	

special infrastructure – mobile shielding / exchange flask

- mobile and specifically adapted shielding devices are used for targets and critical components as extraction elements or septum magnets
- target exchange flasks are complicated and expensive devices [heavy, motors, instrumentation, SPS controls]

picture: exchange flask for Meson production target E (4cm graphite wheel)

special infrastructure – hot cell facility

Next:

╵═┶═╴

generation and transport of a high power beam [cyclotrons, power conversion efficiency, losses / critical aspects, upgrade plans, targets]

M.Seidel, J-PARC/Japan, 7.7.2009

history max. current of the PSI accelerator

CW Acceleration using a Sector Cyclotron

590 MeV Ring Cyclotron

(magnets) in operation for 30+ years

- 8 Sector Magnets 1 T - Magnet weight ~250 tons - 4 Accelerator Cavities850kV (1.2MV) - Accelerator frequency: 50.63 MHz - harmonic number: 6 72 → 590MeV - beam energy: - beam current max.: 2.2 mA - extraction orbit radius: 4.5m - relative Losses @ 2mA: ~1..2.10-4 0.26-0.39 MW/Res. - transmitted power:

FEI major component: RF Resonators for Ring Cyclotron

- the shown Cu Resonators have replaced the original AI resonators [less wall losses, higher gap voltage possible, better cooling distribution, better vacuum seals]
- f = 50.6MHz; Q₀ = 4·10⁴; U_{max}=1.2MV (presently 0.85MV→186 turns in cyclotron, goal for 3mA: 165 turns)
- transfer of up to 400kW power to the beam per cavity
- deformation from air pressure ~20mm; hydraulic tuning devices in feedback loop \rightarrow regulation precision ~10µm
- \rightarrow very good experience so far

Grid to Beam Power Conversion Efficiency

for industrial application, transmutation etc., the aspect of **efficient usage of grid power** is very important

PSI: ~10MW Grid \rightarrow 1.3MW Beam

critical for losses/trips: electrostatic elements

 $E_{k} = 590 MeV$ E = 8.8 MV/m $\theta = 8.2 \text{ mrad}$ $\rho = 115 \text{ m}$ U = 144 kVmajor loss

mechanism is scattering in 50µ m electrode!

2009

losses reduced by turn number reduction

Component activation – Ring Cyclotron

activation level allows for necessary service/repair work

- personnel dose for typical repair mission 50-300μSv
- optimization by adapted local shielding measures; shielded service boxes for exchange of activated components
- detailed planning of shutdown work

activation map of Ring Cyclotron

(EEC = electrostatic ejection channel)

personal dose for 3 month shutdown (2008):

57mSv, 188 persons max: 2.6mSv

cool down times for service:

 $2000 \rightarrow 1700 \; \mu \text{A}$ for 2h

 $0\;\mu A$ for 2h

map interpolated from ~30 measured locations

Cyclotron Upgrade – fast acceleration, short bunches!

average voltage gain per turn [MV]

250

turns in Ring Cyclotron

1.5

1992

300

1988

3 cavity mode

400 450

350

1.3 1.15

3.4 2.6 2.1 1.7 5 4 scaling law I_{max} ⊠ N⁻³ goal: 3mA [1.8MW] ullet3 est. 3.0mA 2008 2007 2004 1995 philosophy: keep absolute • 1994 losses constant [[mA] losses \propto [turns]³ \propto 0.5 [charge density (sector model)] × 0.3 [accel. time] / [turn separation] historical development of turn numbers in PSI Ring (W.Joho) Cyclotron

measures:

- → new Resonators in Ring Cyclotron [done!]
- → 10'th harmonic buncher before Ring [still under work, but close]; important: numerical modeling \rightarrow neighboring bunches, interplay with flattop

0.1

150

200

- → new ECR ion source
- → replace flattops with new accel. resonators in Injector II [expected for 2011]
- → new RF amplifiers for all four resonators in Injector II [expected for 2011]
- → replace absorbers behind 4cm Meson Prod. Target [expected for 2012]

FED avoid tail generation with short bunches

numerical study of beam dynamics in Ring Cyclotron

- \rightarrow behavior of short bunches, generated by 10'th harmonic buncher
- \rightarrow optimum parameters of flat-top cavity at these conditions

M.Seidel, J-PARC/Japan, 7.7.2009

FED present PSI upgrade project: resonators Inj.II for $2.2 \rightarrow 2.6 \rightarrow 3.0$ mA

High Power Meson Production Target

TARGET CONE				
3.0mA o.k., limit: sublimation				
Mean diameter:	450 mm			
Graphite density:	1.8 g/cm ³			
Operating Temp.:	1700 K			
Irrad. damage rate:	: 0.1 dpa/Ah			
Rotation Speed:	1 Turn/s			
Target thickness:	60 / 40 mm			
	10 / 7 g/cm ²			
Beam loss:	18/12 %			
Power deposit.: 3	0 / 20 kW/mA			

SPOKES

To enable the thermal expansion of the target cone

BALL BEARINGS *)

Silicon nitride balls Rings and cage silver coated Lifetime 2 y *) GMN, Nürnberg, Germany

G.Heidenreich et. al. M.Seidel, J-PARC/Japan, 7.7.2009

M.Seidel, J-PARC/Japan, 7.7.2009

Next:

aspects important for potential ADS application [energy amplifier / transmutation]

- reliability and trip statistics
- cyclotrons for ADS applications?

M.Seidel, J-PARC/Japan, 7.7.2009

reliability: statistics of run- and interruption periods

➔ cyclotron operation is typically distorted by short (30sec) interruptions from trips of electrostatic elements or beam-loss interlocks

→ significant improvement with reduced turns (new Reson.) was observed in 2008

statistics of run durations 07/08

➔ histogram for occurrence of uninterrupted run periods as function of duration, integrated from right; average number per day; comparison 2007/2008

➔ high reliability is important for our users and for other potential high power applications of cyclotrons

overall availability in comparison

possible measures to improve the reliability of cyclotron-accelerators

- trip rate of electrostatic elements: higher turn separation; possibly very quick charge up after trip to keep interruption short
- redundancy of resonators in cyclotron; quick precomputed compensation of failed resonator with remaining ones
- possibly second injector (source + RFQ)

<u>my personal opinion</u>: developments are needed not only for accelerators, but also on the target/reactor side
→ better tolerance against beam trips?

FED

Proposal for a 10 MW driver

[1997, Th.Stammbach et al]

parameters	1 GeV Ring	PSI Ring
Energy	1000 MeV	590 MeV
Injection energy	120 MeV	72 MeV
Magnets	12 (B _{max} = 2.1 T)	8 (B _{max} = 1.1 T)
Cavities	8 (1000 kV)	4 (800 kV)
Frequency	44.2 MHz	50.63 MHz
Flat tops	2 (650 kV)	1 (460 kV)
Injection radius	2.9 m	2.1 m
Extraction radius	5700 mm	4462 mm
Number of turns	140	186
Energy gain at extraction	6.3 MeV	2.4 MeV
DR/dn	11 mm	5.7 mm
Turn separation	7 s	7 s
Space charge limit	10 mA	2.2 mA (3.0 @ 4 MV/turn)
Beam power	10 MW	1.3 MW

FEDstate of the art cyclotron technologyat RIKEN/Japan

6 superconducting sector magnets, B ~ 4.5T

high field bending magnets can be utilized also for high intensity cyclotrons

→ gain space for more/optimized resonators

➔ introduction of sc. resonators could be envisaged

→ note: turn separation ~ avg. orbit radius; so goal of stronger field is not to make cyclotron more compact!

\frown	
—	
-	U

Discussion

PSI: 50MHz Resonator

TESLA Collab.: 1.3GHz sc. Resonator

	Cyclotron		Superconduct. Linac
Pro	compact in-expensive design, efficient power transfer, only few resonators needed, relatively simple	Pro	large beam aperture, no complicated bending fields, tuning straightforward, high energy possible
Con	injection/extraction critical, complicated bending magnets, elaborate tuning required, energy limited 1GeV	Con	non-compact accelerator, power coupler critical, needs large cryogenic facility
Oth.	naturally CW operation	Oth.	pulsed operation possible

FED

Summary

- the PSI accelerator delivers at max. 1.3MW beam power in CW mode; average reliability is 90-94%; ~25 trips per day (2008)
- the cyclotron concept presents an effective alternative to generate a high power beam for ADS applications; 1GeV/10MW cyclotron seems feasible in next step; fundamental limit at 1GeV energy – no obvious limit for power
- the reliability statistics at PSI is o.k. for today's standards but still 3 orders of magnitude below the claimed requirements for ADS → development of failure tolerant systems, but also improvements on the reactor side desirable!

Thank you for your attention!