Activity Report 2022

Computing Research Center

目次

第 | 部 研究活動

1.	Gea	ant4
	1.1	Geant4 コラボレーションの運営
	1.2	講習会の開催
	1.3	Geant4 による ARM 系 CPU の性能評価
	1.4	MPEXSの開発 8
	1.5	MPEXS-DNA による FLASH-RT シミュレーション
0	ᆂᄮ	
2.	<u> </u> 系	2 丁 理論における 高次 補止 計算
	2.1	11 11
	2.2	複素質量1ループ積分
	2.3	数値計算関連の研究
3.	格子	ゲージ理論シミュレーション
	3.1	格子ゲージ理論の大規模シミュレーション
	3.2	計算科学のためのアルゴリズムとシミュレーション手法の研究
	0.2	
4.	中性	と子用オブジェクト指向データ解析システム
	4.1	データ解析フレームワーク "Manyo Library" の研究開発 16
	4.2	ソフトマターのシミュレータの研究開発と高分子基礎物性 16
5.	統計	h的手法の物理解析への応用とシミュレーション
6	. –	
0.	<u>~</u> _	- コアノロセッリ演算システムにおりるシミュレーションノロッノム
	のけ	究開発
7	デ_	- 夕収住シューム
1.	7 1	
	1.1	Dellez アーク収集ンAアムから NENUU へのノアイル転达力式の以善検討 22
8.	深層	学習による計算機資源の効率的活用

8.1	はじめに	24
8.2	研究の目的とこれまでの活動	24
8.3	GNN と深層学習モデル概要	24
8.4	Parallel Workload Archive と実験結果	26

第 I 部 研究活動

1. Geant4

佐々木 節、尼子 勝哉、岡田 勝吾、村上 晃一

Geant4の維持、開発は、世界中の研究機関共同による Geant4 コラボレーション組織の 下で行われている。計算科学センターは、日本グループの活動のホストとしての役割を果し ている。また、ユーザサポートとして、研究会や講習会などを定期的に開催している。研究 開発面では、Geant4の高速化への取り組みや、医学応用など学際分野への展開を行ってい る。

1.1 Geant4 コラボレーションの運営

Geant4 コラボレーションでは、様々な委員会のもと、コラボレーションの運営が図られ ている。計算科学センターからは、村上、岡田が Steering Board の委員、佐々木が Geant4-DNA の副スポークスパーソン、岡田が Geant4-DNA の Steering Board の委員となってい る。2021 年度は Geant4 v11.1 のリリースと 3 件のマイナーパッチを公開した。

1.2 講習会の開催

ユーザサポート活動として、研究会や講習会を定期的に開催している。コロナ禍で対面 での講習会の開催を延期してきたが、3年ぶりに対面での開催を再開した。2022年12月 14から16日にかけて九州大学・西新プラザにて、Geant4初心者講習会を開催した。今 回は、九州大学先端素粒子物理研究センター、高エネルギー加速器研究機構加速器科学総 合育成事業、日本学術振興会研究拠点事業「ミューオン素粒子物理学の国際拠点形成」に 会場提供や会議運営の協力をいただいた。高エネルギー・原子核実験、宇宙関連の大学院 生や企業の研究者、43名が参加した。[https://wiki.kek.jp/x/TQIZDg]

1.3 Geant4 による ARM 系 CPU の性能評価

HEP 実験においては、Geant4 を使ったモンテカルロ・シミュレーションなどで、非常に 多くの CPU 資源を使用している。その一方で不安定な世界情勢に起因して、電気代の高騰 や脱炭素化社会の実現に向けた課題を抱え、CPU に対しては演算能力だけでなく高い電力 性能を有することも必要となってきている。

ARM アーキテクチャはスマートフォンやタブレット端末、組み込み系デバイスなどの省 電力が求められる分野において幅広く利用されている。近年、パーソナルコンピュータや データセンターの用途でも、x86系と同等以上の演算/電力性能をもった ARM 系 CPU も登 場してきている。そこで、Geant4を使って幾つかのARM系 CPUの性能評価を行った。

1.3.1 ベンチマーク

ベンチマーク環境については、x86 系と ARM 系それぞれ3種類の CPU を搭載する計6 つの環境を用意した。x86 系は Intel の Core-i9 (13 世代) と Xeon (Icelake 世代)、AMD EPYC (Milan 世代)の3つ、また、ARM 系は Apple の M1/M2 と富士通の A64FX の3つ である。各ベンチマーク環境の CPU、OS、コンパイラを表1に示す。

CPU	Intel Core i9- 13900K	Intel Xeon Gold 6326 (Ice Lake)	AMD EPYC 7313P (Milan)	Apple M2 Pro	Apple M1	A64FX
Architecture	x86	x86	x86	ARM	ARM	ARM
# of cores	P-core: 8 E-core: 16	32 cores (=16 x 2CPUs)	16 cores	P-core: 8 E-core: 4	P-core: 4 E-core: 4	48 cores
Max Clock Frequency	5.8 GHz	3.5 GHz	3.7 GHz	unknown	unknown	2.2 GHz
Memory	125 GiB	503 GiB	62 GiB	32 GB	16 GB	31 GiB
OS	Ubuntu 22.04 LTS	Alma Linux 9.2	Alma Linux 9.2	mac OS 13.5 Ventura	mac OS 13.5 Ventura	Cent OS 8.1
Compiler	GCC 11.4.0	GCC 11.3.1	GCC 11.3.1	Apple Clang 14.0.3	Apple Clang 14.0.3	GCC 8.5 / Fujistu Compiler

表1 ベンチマーク環境(CPU、OS、コンパイラ)

表中の P-core は高性能コア、E-core は高効率コアを示す。

ベンチマークに利用する Geant4 のアプリケーションは次に示す2つを用意した。これ らは Geant4 ver. 10.7 patch-4 で実行した。

- 電磁シャワー・シミュレーション
 - ▶ 初期粒子: 運動エネルギー 1 GeV の電子
- マイクロドジメトリ・シミュレーション (Geant4-DNA)
 - ▶ 初期粒子: 運動エネルギー 750 keV の電子
 - ▶ 水の放射性分解で生成する活性種の拡散・化学反応をシミュレート

1.3.2 ベンチマーク結果

各 CPU の演算性能は EPS スコアで評価した。EPS スコアの定義は下記の通りである。

- 電磁シャワー・シミュレーションの場合: 1秒間あたりの処理イベント数
- マイクロドジメトリ・シミュレーションの場合: 1分間あたりの処理イベント数

1.3.2.1 シングルスレッドの性能評価

図 1 は電磁シャワー・シミュレーションにおける各 CPU のシングルスレッド性能を示 す。検証に用意した 6 つの CPU のうち Intel Core-i9 が最も演算性能が高い。ターボブー スト時のクロック周波数は 5.8GHz に達し、EPS スコアは Intel Xeon や AMD EPYC の 2 倍以上である。次点で Apple の M1/M2 であり、Xeon や EPYC の 1.5 倍以上の演算処理速 度を有する結果となった。富士通の A64FX については、OS に付属する GCC コンパイラ と富士通コンパイラのそれぞれで Geant4 をビルドしてベンチマークを実施した。いずれの 場合においても A64FX の演算性能は Xeon の 1/7 程度であった。

図1: 各CPU のシングルスレッド性能(電磁シャワー・シミュレーション)

図2はマイクロドジメトリ・シミュレーションにおけるシングルスレッド性能を示す。電磁シャワー・シミュレーションと同様の傾向を示す。A64FX については、富士通コンパイラで最適化オプションを課した場合において他の A64FX のケースと比較して 2 倍弱パフォーマンスが向上している。Geant4-DNA の化学過程では多重ループ処理が最も計算コストが高く、ここが最適化されて演算速度が上がったのではないかと推察する。

図2: 各CPU のシングルスレッド性能(マイクロドジメトリ・シミュレーション)

1.3.2.2 マルチスレッドの性能評価

図 3 と図 4 は各アプリケーションでのマルチスレッド性能を示す。スレッド数に応じて 演算性能は直線的にスケールしている。物理コアの範囲内においては Intel Core-9 が最も 演算性能が高い。Apple M1/M2 も Xeon や EPYC よりも高い性能を示している。尚、Corei9 と M1/M2 において、物理コアの範囲内で分布の傾きが途中で変化しているのは、高性能 コアと高効率コアの二種類の演算コアが搭載されているためである。

図4: 各CPU のマルチスレッド性能(マイクロドジメトリ・シミュレーション)

1.3.2.3 電力性能測定の結果

電磁シャワー・シミュレーションにおいて、A64FX を除いた 5 つの CPU¹の電力性能を 評価した²。図 5 は各 CPU の消費電力と EPS スコアの相関図である。分布の傾きが大きい ほど、省電力で高い演算性能を示すことを意味する。

Core・i9 と M2 に注目して両者の電力性能を比較する。まず、電力を 50W に固定の下そ れぞれの EPS スコアを比較すると、M2 の方が Core・i9 よりも5 倍の演算性能が出ている。 更に EPS スコアを 2,500 で固定して両者の消費電力を比較すると、M2 は Core・i9 の 26% の電力しか使っていないことがわかる。Core・i9 の演算性能は、ベンチマークで使用した CPU の中で最も高いことは前述の通りである。しかし、それと同時に消費電力も大きい。 電力性能の観点で評価すると、M1/M2 は優れた CPU であることがわかった。

一方、Intel Xeon と AMD EPYC は、シングルスレッドおよびマルチスレッドの性能評価において大差はなかった。しかし、電力性能で比較すると、EPYC の方が Xeon よりも 2倍ほど電力性能が優れていることを確認した。

図5: 各CPU の電力性能の評価(電磁シャワー・シミュレーション)

¹ 使用したワットメータが消費電力 100W のデバイスのみの対応で A64FX を搭載した FX700 (消費電力: 200W) は測定不可であり、除外した。

² 実際はマザーボードやファンなどの消費電力を切り離すことができずに混在しているので、 厳密には CPU だけの消費電力を評価しているのではない。

1.4 MPEXS の開発

2021 年度から4年間の研究期間で、科研費基盤研究(A)「放射線シミュレータの新展開」 (研究代表者 佐々木)の研究課題が採択されている。GPU を使った放射線シミュレーショ ンの高速化と、その成果の応用的展開を継続して実施している。また、岡田が「超並列計算 による高線量率超短時間照射 (FLASH)効果の数理モデルの構築」の課題で、2021 年度か ら3年間の研究期間で科研費基盤研究(C)に採択されている。村上が、「次世代放射線治療の ための超並列放射線輸送アルゴリズムの高度化」の課題で、2022 年度から3年間の研究期 間で科研費基盤研究(C)に採択されている。

MPEXSの応用として、放射線治療装置のシミュレーションに関して、1社の企業と共同 研究を実施している。放射線治療計画の線量計算エンジンとしての開発を進めている。

1.5 MPEXS-DNA による FLASH-RT シミュレーション

近年、放射線治療分野においては、高線量率短時間照射(FLASH)が注目されている。 FLASH は、40Gy/s 以上の非常に高い線量率の放射線(従来の放射線治療の線量率は 0.03Gy/s 以下)をパルス状で患部に照射するものである。FLASH の特徴は、がん細胞への 殺傷能力を保持したまま正常細胞への放射線影響を顕著に抑制することである。実はこの ような現象は 1960-70 年代に行われた動物実験などで既に確認されていた。しかし、当時 の放射線治療機器では実現不可能と考えられて、研究は一時下火になっていた。FLASH の 機序については、正常細胞内の酸素濃度が瞬間的に著しく低減し、損傷した DNA が酸素に より損傷を固定化されず修復しやすくなることが示唆されている。その他にも DNA 損傷を 引き起こす OH ラジカル同士の再結合が活性化してその数が低減し、DNA 損傷率が下がる という仮説もあるが、明確に理解されているわけではない。モンテカルロ法で FLASH 効果 をシミュレートしてその機序に迫る試みも行われている。しかし、前述の通り FLASH は一 度に大量の放射線を照射するため、これをモンテカルロ・シミュレーションするにも追跡す べき荷電粒子や活性種の数が膨大となり計算時間の長大化は避けられない。

MPEXS-DNA は、GPU による超並列計算により細胞核内部で生じる荷電粒子の物理反 応や活性種の拡散・化学反応を高速にシミュレートできる。2021 年度から、科研費・基盤 研究(C)「超並列計算による高線量率短時間照射(FLASH)効果の数理モデルの構築」が採択 された。FLASH による水の放射性分解の反応を素過程レベルで追跡できるよう MPEXS-DNA の機能拡張を行った。例えば、従前は一度にひとつの初期粒子しかターゲットに撃つ ことができなかったが、それを所定の線量に達するまで繰り返し初期粒子を撃てるように した。また、溶存する分子種との化学反応を扱えるように新たなモデルを実装した。

FLASH に相当する線量率で荷電粒子を照射して活性種のG値3の時間推移を計算した。

³ 100 eV のエネルギー損失で生成される活性種の個数。

その一例を示す。照射粒子は運動エネルギー55MeVの陽子とし、水ファントムへの照射総線量を30mGyに固定。線量率が0.02Gy/sから500Gy/sとなるようにパルス幅を調整した。パルス数は1とし、この間に照射線量が30mGyに達するまで陽子線をファントムに繰り返し照射する。図6と図7はそれぞれOHラジカルとH2O2分子のG値の時間推移である。線量率の上昇に伴い、パルス照射時において前の時間に照射された陽子の反応で生じた活性種が拡散しきる前に次の陽子照射で新たに活性種が生じ、化学反応が活性化される。実際に、OHラジカルは自身の再結合(・OH+・OH->H2O2)が活発となりG値はある時点を境に著しく減少し(図6)、逆にH2O2分子は増加する(図7)。この傾向は、既刊のFLASHに関するモンテカルロ・シミュレーションの結果と一致している。

本研究は量子科学技術研究開発機構との共同研究であり、共同研究者がサイクロトロン を使用して FLASH の実験的研究を行っている。MPEXS-DNA のシミュレーション結果が 実測結果を再現するものか検証を行っていく。

2. 素粒子理論における高次補正計算

石川 正、金子 敏明、湯浅 富久子

2.1 はじめに

素粒子物理学では、標準模型やそれを超える模型などが提唱され、物質の元となる素粒子の性質や時空の理解を進めようとしている。高エネルギー加速器による素粒子実験のデータを理解するため、これらの素粒子の模型を使って素粒子物理学の場の理論に基づきLattice QCD のような非摂動的な扱いを行う方法と、摂動的に行う方法等があり、コンピュータを用いた理論的研究が進められている。我々は与えられた物理模型(ラグランジアン)から、摂動論的に素粒子衝突反応の断面積を計算機で自動的に数値計算を行うためのシステム開発を行ってきている。近年の加速器実験(LHC、ILC)においては、高エネルギー衝突で起こる様々な現象を高精度で測定し、標準模型の厳密な検証や標準模型を超えた物理を探索することが期待されている。実験データを解析して素粒子の性質などを精密に分析するためには、多様な素粒子衝突反応の高次補正を含む精密な大規模な理論計算が不可欠で、自動計算システムの構築が進められている。自動計算システムでは、場の理論の記号処理的な取扱いから数値計算法まで様々な要素技術が必要で、これらは計算科学にも密接に関係するため計算科学センターにおいて研究開発を行っている。

摂動論で取り扱うのは、ファインマングラフの計算であり、高次の場合には、ファインマ ンループ積分が出現する。この積分に関する研究としては、ループ積分をマスター方程式に リダクションする部分積分方法、特異性を抽出するセクター分解法、Mellin-Barnes 変換す る方法、マスター方程式を微分方程式にする方法、最も一般的な形である超幾何関数で表現 する方法などがあり、世界中の多くの研究者が研究を進めている。

ここでは、進めている高次の輻射補正計算の数理的方法の拡張と数値計算法等について述べる。

2.2 複素質量1ループ積分

不安定粒子が含まれるループ積分を計算する場合には、それらの粒子の質量を複素数と し、有限の虚部を持つものとして扱う必要がある。こうした計算は、多くの場合数値積分に より実行することができるが、解析的な計算を行いそれに基づきライブラリとして用意し ておくことが計算効率と一般性の点で望ましい。また、解析的な計算により特異点付近での 漸近的振る舞いなどの情報を得ることができる。

実数の質量をもつ粒子の場合にはループ積分の被積分関数は、通常導入される(-iε)の 項のために積分領域内で発散することはないが、質量を任意の複素数とした場合には被積 分関数は積分領域内に特異点を持ち、多重積分の途中で多価関数となる。特異点付近の寄与 を分離すると同時に、複素平面にカットを入れ、多価関数を一価関数にした上で積分する必 要がある。こうした特異点と不連続性を持つカットは、運動量や質量の実部・虚部の値の大 小により変化する幾何学的な構造により、出現場所やその寄与が変化する。これらに対応し た解析的積分結果を求め、数値計算ライブラリとして整備することが求められる。

今年度は、Feynman graph の構造とループ積分の構造とのより深い関係を見るために、 グラフ理論的な検討を行った。特にループ積分は、Feynman parameter と運動量と質量か らなる、C と D と呼ばれる 2 つの因子の組み合わせから構成される。これらとグラフの 構造との関係、C を共通にもつグラフの特徴付けについて検討した。

2.3 数値計算関連の研究

摂動論の高次補正の計算に現れるファインマン積分は多次元積分であり、解析的な方法 を用いず全てを数値計算で行う方法(DCM: Direct Computation Method、直接計算法と よぶ)の研究開発を進めている。

2022 年度は、日本物理学会にて湯浅富久子(KEK 名誉教授)が「数値的手法を活用した 電弱理論の2ループ補正計算」「ファインマン積分の数値計算法: DCM による電弱高次補正 計算 IV」というタイトルで報告を行った。また以下の論文を1つ発表した。

これらの研究では、湯浅富久子(KEK 名誉教授)他、E. de Doncker(ウェスタンミシガン大学)、加藤潔(工学院大学)、台坂博(一橋大学)、中里直人(会津大学)、安井良彰(東京経営短期大学)が参加している。

[1] Numerical Regularization for 4-loop Self-Energy Feynman Diagrams,

E de Doncker, F Yuasa, T Ishikawa

Journal of Physics: Conference Series 2438(012147) 1-6 2023 年 2 月 (査読あり)

3. 格子ゲージ理論シミュレーション

松古 栄夫

3.1 格子ゲージ理論の大規模シミュレーション

素粒子であるクォークの間に働き、原子核を形作る核力の源である強い相互作用は、量 子色力学(Quantum Chromodynamics, QCD)によって記述される。QCD はその結合の 強さが距離とともに増大するため、結合定数によって展開する摂動論は低エネルギー領域 で破綻し、解析的な計算が困難となる。このため、ハドロンの性質や粒子衝突におけるハ ドロン散乱振幅などを定量的に調べるには、なんらかの非摂動論的手法が必要である。格 子 QCD は場の理論としての QCD を 4 次元立方格子上で定式化したもので、経路積分を数 値的に実行することにより、第一原理である QCD に基づいた計算を可能にする。

近年の理論的進展、計算機の発達、アルゴリズムの改良などによって、格子 QCD シミュ レーションの精度や信頼性は大きく向上し、素粒子・原子核の物理現象を理解する上で重 要な役割を果たしている。既に物理的クォーク質量での計算が実現し、フレイバー物理に 現れるハドロン行列要素の精密計算が進んでいる。また格子ゲージ理論は、標準理論を構 成する QCD のみならず、他の場の理論の解析にも適用できる。標準理論を超えた物理の候 補として注目されている、超対称性理論やテクニカラー理論に対しても応用が進められて いる。

2022年度には、以下のような研究を進めた。

(1) 複素ランジュバン法による有限密度系の研究

格子 QCD の有限密度系は、フェルミオン作用が複素数となることによる複素位相問題の ため、モンテカルロ法の適用が困難であった。近年、複素ランジュバン法というアルゴリ ズムが開発され、有限密度系を扱える可能性が出てきた。この複素ランジュバン法を適用 可能な条件を理解し、カラー超伝導相などの有限密度系に応用する研究を、KEK 素粒子原 子核研究所の西村淳氏らとの共同研究で進めている。

(2) 格子 QCD コード Bridge++の開発

C++言語で記述されたオブジェクト指向デザインによる格子 QCD コード Bridge++ を開 発している。2012 年 7 月に最初の公開版を ver.1.0 としてリリースしたが、その後も継続 的にデザインの改良、機能拡張、高速化、ドキュメントの整備等を進めている。特に近年 の高性能計算機アーキテクチャに対応した最適化コードを組み込むことは、実際の研究で 利用するために不可欠であり、これまでデザインの検討とコード開発を続けてきたが、2023 年 3 月に Ver.2.0 として公開に至った。これは線形方程式ソルバーなど計算負荷の高い部分 を最適化コードで置き換えるものであり、既存コードや他の最適化コードとの併用が可能 である。2022 年度末現在の最新版 Ver.2.0.0 では、スーパーコンピュータ富岳のために開 発された A64FX アーキテクチャ向けの最適化コードを組み込んでいる。GPU 向けコード や Intel AVX-512 向けコードについても公開に向けた開発作業を進めている。また大規模線 形方程式の高速解法であるマルチグリッド法の開発を行っている。

Bridge++ サイト: <u>http://bridge.kek.jp/Lattice-code/</u>

3.2 計算科学のためのアルゴリズムとシミュレーション手法の研究

これまで HPCI 戦略プログラム分野 5「物質と宇宙の起源と構造」、ポスト京重点課題 9「宇 宙の基本法則と進化の解明」において、計算科学の推進を図る活動として、数値計算アル ゴリズムの分野横断的応用・開発、種々の計算機アーキテクチャの性能を十分に引き出す ための手法の開発、計算科学に必要なデータグリッド (JLDG: Japan Lattice Data Grid) や格子 QCD 共通コードの開発などを行ってきた。これらは素粒子・原子核・宇宙のそれ ぞれの分野で培った技術を分野横断的に応用し、計算機科学や応用数学の専門家と連携・ 協同して計算手法を発展させてゆくことを目的としている。2022 年度には以下のような研 究を進めた。

1. 超新星爆発の大規模シミュレーション

これまで並列化や線形アルゴリズムの改良で共同研究を行った、超新星爆発シミュレーションのプロジェクトに引き続き参加し、研究を行っている。本プロジェクトは早稲田大学の山田章一氏、沼津高専の住吉光介氏らを中心とする共同研究である。2次元、3次元 空間での流体力学方程式と結合した Boltzmann 方程式によるニュートリノ輻射輸送方程 式を用いて、理研のスーパーコンピュータ富岳、東大情報基盤センターの Wisteria 等を利 用した大規模計算を進めた。

2. 超新星爆発シミュレーションコードの GPU による高速化

球対称近似でのシミュレーションは、爆発には至らないことが知られているが、観測デー タとの比較や 2,3 次元での計算の基礎として重要であり、高精度化が必要とされている。 このようなシミュレーションコードを GPU や PEZY-SC 等のアクセラレータを利用して 高速化する研究を、沼津高専の住吉光介氏との共同研究として行った。またベクトル計算 機である KEK の NEC SX-Aurora TSUBASA 向け最適化も進めた。

3. 高性能計算物理勉強会

素粒子・原子核・宇宙物理の分野において不可欠な研究手法である計算科学的アプローチ

に関して、分野を越えた研究者間の情報交換や協力体制構築を進めるため、高性能計算物 理勉強会(HPC-Phys)を2018年に開始した。この活動は計算基礎科学連携拠点(JICFuS) が主催する活動として行っており、松古はアドバイザーとして運営に参加している。2022 年度は計4回の勉強会を開催し、そのうち2回はオンライン、2回はオンライン+オンサ イトで行った。

HPC-Phys 勉強会サイト: <u>http://hpc-phys.kek.jp/</u>

4. Japan Lattice Data Grid (JLDG)

JLDG は計算素粒子物理学および関連する分野のためのデータグリッドであり、グリッド ファイルシステム Gfarm を利用して、国立情報学研究所が運営する SINET 上に構築され ている。JLDG の運用チームに参加し、KEK サイトの運用と、JLDG の利便性向上のた めの開発研究を行っている。

JLDG サイト: <u>https://www.jldg.org/</u>

5. International Lattice Data Grid (ILDG)

ILDG は Lattice QCD のためのインフラストラクチャーとして Data Grid を整備する国際 的な活動であり、地域グリッドを構成メンバーとして ILDG board と 2 つのワーキンググ ループ (Metadata WG, Middleware WG)を中心とした開発研究を行っている。JLDG も地域グリッドの一つであり、ILDG board および WG へも JLDG チームのメンバーが参 加している。松古は Metadata WG のメンバーとして、XML によるメタデータ記述の規 約 QCDml (QCD markup language)や配位データフォーマットの改訂に向けての議論や、 Hands-on ワークショップなどの広報活動に参加し、Web ベースでメタデータを作成する ためのソフトウェアの開発などを行っている。

ILDG サイト: <u>https://hpc.desy.de/ildg/</u>

4. 中性子用オブジェクト指向データ解析システム

鈴木 次郎、真鍋 篤

4.1 データ解析フレームワーク "Manyo Library"の研究開発

大強度陽子加速器施設(J-PARC)は、高エネルギー加速器研究機構(KEK)と日本原子力研 究開発機構(JAEA)が共同で建設し、運用をしている施設である。J-PARC の物質生命科学 研究施設(Materials and Life Science Facility: MLF)は,陽子ビームから得られるパルス中 性子/中間子ビームを用いて物質科学と生命科学実験を行う実験研究施設であり,世界最高 強度の 1MW での運転を目指している。MLF には、23 の中性子実験用のビームラインが 整備され様々な研究分野(結晶、磁性体、ソフトマター、中性子物理など)に対応する分 光器が設置され運用されてきている。KEK 計算科学センターは CROSS 東海のメンバーら とともに MLF 建設期から協力してきている。オブジェクト指向データ解析システム (Manyo-Lib)は MLF 計算環境のうち、各ビームラインにおいてデータ解析システムの中核 となるフレームワークである。

Manyo-Lib は、中性子実験で共通に使用する機能(データコンテナ、ネットワーク分散処 理環境、並列化機能、データ解析演算子)を提供し、各ビームラインにおいて個々の分光器 の仕様や実験対象物、研究者の目的に合致したデータ解析ソフトウエアの構築の基盤とし て利用がされてきている。このような基盤ソフトの整備は、物質科学分野の研究施設では 初めての試みであり、メンテナンスを含めて運用されている。Manyo Lib がサポートする データフォーマットは HDF(Hierarchical Data Format)を基盤とした NeXus (A common data format for neutron, x-ray and muon science, http://www.nexusformat.org/)で、物質 科学の散乱実験のデータフォーマットとして国際的に策定が行われているものである。 Manyo Lib の開発を通じて MLF の要望を提案するとともに、国際規格の策定と拡がりに貢 献をしている。

Manyo Lib は現在 MLF にある 23 の分光器のうち、16 のビームラインでインストールさ れ利用され実験データ解析の基盤環境として稼働している。一方で Manyo-Lib は 2003 年 より研究開発がされていているが、2022 年度は大幅な拡張はなくメンテナンスが MLF の 中性子の分光器グループによって行われた。

4.2 ソフトマターのシミュレータの研究開発と高分子基礎物性

ソフトマターは一般に、高分子やタンパク質などの分子それ自体が柔らかいもので、小 さな外場(力学、磁場、光など)によって分子の変形がおこる。「ソフトマターの科学」の 歴史は 100 年で新しい研究分野で基礎物性の研究は発展途上であるが、一方で有機 EL や コンデンサーなどを始めとして様々な電子デバイスなどに最先端の技術として当たり前の ように応用されている。

ここで研究開発をしているモンテカルロシミュレータは、高分子材料の中性子散乱実験 データの解析を目的とするもので、J-PARC/MLFの解析環境に接続できるシミュレータの 1つになる。中性子散乱実験は他の粒子線ビーム(光、X線、電子ビーム)と比較して波長 が長く(エネルギーが低い)、分子の大きなソフトマターの構造や応答を調べるには適した 方法である。このシミュレータを利用して、5つの異なる種類の高分子を連結したペンタブ ロック共重合体のミクロ相分離構造の考察を行った。

5 つの異なる種類の高分子を連結したペンタブロック共重合体のバイナリブレンド (ABCBD型とCBABD型)が示すミクロ相分離構造の考察を行った。シミュレータからは、 パラメータを変化させることでDドメインをAとCがぞれぞれ2つまたは3つが取り囲ん だ正方形または正六角形をユニットとする正多角形のタイリングが得られた。正多角形の タイリングは正3,4,6角形だけが知られていることに対応する。さらに変化させると「四角 形と三角形のタイリング」ついで「五角形と三角形のタイリング」が得られることがわかっ たが、これは正八角形、正十角形のタイリングができないことと対応する[1]。

一方で、ブレンドを行わない ABCBD 型において、両端の A と D が同じ長さとし、さら に 2 つの B が同じ長さになるように設定をした中心対称な形のペンタブロック共重合体に ついて詳細な検討を行った。その結果、3 次元周期的極小曲面の一種である Schoen's Gyroid を 骨 格 と した ホモキラルな 構造を持つことが明らかになった [2]。この 構造は "Macromolecular Theory and Simulations"の表紙に採用され、さらに共通基盤研究施設 の Web においてハイライトとして紹介された[3]。

[1] ペンタブロック共重合体ブレンドによる二次元超格子構造の構築、第71回高分子討論会(北海道大学、 2022.09.07)

[2] "Helical Microdomains with Homochirality Trapped in a Gyroid Network from Symmetric AB1CB2D Pentablock Quaterpolymer Melt Studied by Monte Carlo Simulation"

Jiro Suzuki, Atsushi Takano and Yushu Matsushita, Macromolecular Theory and Simulations

vol=31, page=2200015, year=2022, https://doi.org/10.1002/mats.202200015

[3] https://www2.kek.jp/arl/highlight/20220929/index.html

5. 統計的手法の物理解析への応用とシミュレーション

柴田 章博

本プロジェクトでは、主としてベイズ統計に基づく数値統計の技術・手法を応用し、高 エネルギー物理や素粒子物理などに現れる問題の数値的な解法を研究する。近年、複雑な データ構造もった大規模データの解析にはデータベース技術や数値的な方法によるデータ 解析が重要であり、シミュレーション技術や可視化技術の開発を合わせて行なう。また、 ある種のミュレーションでは問題のパラメータに従った確率で事象を発生させて実験や観 測を模擬することが求められるため、シミュレーションのアルゴリズム、特に、確率過程 サンプル法を検討する。本年度は昨年度から引き続き、拘束条件付き確率過程サンプル法 とその応用研究を行った。

拘束条件付き確率過程サンプル法

数値シミュレーションでは、現象を適切にモデル化した偏微分方程式を立て、それを離 散化し計算機を用いて解くが、その際、方程式の中には拘束条件式がしばしば付加される。 この拘束条件は単に付加されるだけのものではなく、それを成立させるための圧力勾配や 電位勾配のような項を運動方程式に同時に生じさせ、拘束条件式とそれから運動方程式に 追加される項の組み合わせが多様な物理現象の大きな要因になっている。

拘束条件付き確率過程サンプル法は、高次元空間に拘束条件として埋め込まれた拘束面 (陰関数曲面)上でのシミュレーション・ランダムワークによってサンプリングする方法 である。本研究では、ランジュバン方程式に基づく「拘束件付きランジュバン法」と高速 条件付きハミルトンシステムに基づく「拘束条件付き HMC 法」の2種類のアルゴリズム についてする。

高エネルギー粒子衝突実験における素粒子の反応過程への応用:

高エネルギー粒子衝突実験では、電子・陽電子を高エネルギーで衝突させて、弾性散乱 のほか、終状態として初期状態と異なる多数の粒子が生成する素粒子の反応過程を研究す る。終状態の出現確率は微分散乱断面積によって与えられ、その反応過程(散乱断面積) の計算には終状態の粒子数に応じて高次元積分が必要とされる。ここでは、反応過程の新 しいシミュレーションの方法として、確率過程サンプル法(ランジュバン法と呼ぶ)の適 用する。

図 1 は、素粒子反応課程のファイマンダイアグ ラムの例である。電子陽電子が対消滅してµ粒子 が対生成する様子を表している。拘束条件は、始 状態と終状態の間のエネルギー・運動量の保存則 として付加される。拘束面上をランダムウォーク によって、拘束面上の一様サンプルが実現される。

図1素粒子の反応過程の例

図2 散乱確率密度関数(微分散乱断面積)

(論文[1]では、一様サンプルの性質を用いて、点レンダリングによる可視化を行った。)終 状態の出現確率は、ランジュバン法では確率微分方程式にドリフト項(ポテンシャル力の 項)を導入することで実現される。すなわち,終状態の出現確率に応じたポテンシャルを 導入することで、ランダムウォークのトラジェクトリーが変化(陰関数面上の滞在確率が 変化)して、終状態の出現確率に重みづけられたサンプリングが実現される。

図2は、図1の反応課程に対してシミュレーションを行った結果である。微分断面積を 概ね再現できた。しかしながら、終状態の出現確率は微分方程式のローカルな情報に基づ くため、精密な大域的な重みづけを再現することには一定の困難を伴うが、この改善は今 後の課題である。

格子ゲージ理論に基づく数値シミュレーションへの応用:

HMC 法は格子ゲージ理論における数値シミュレーションにおいて広く活用されている アルゴリズムである。本研究では、HMC 法を拘束条件付きの系に拡張し、ゲージ不変な 質量項を有する Yang-Mills 理論格子ゲージ理論のシミュレーションに対して適用する [2]。

本年度は、拘束条件付きのシミュレーションの基礎となる格子上のゲージ非依存(ゲージ不変)なゲージ・随伴スカラーモデルのシミュレーションもコードを作成してテストを 行うとともに、拘束条件付きシミュレーションを実装するためのアルゴリズムの検討を 行った。

文献

- Generalized Stochastic Sampling Method for Visualization and Investigation of Implicit Surfaces, S.Tanaka, A.Shibata, H.Yamamotoy, and H.Kotsuru, Computer Graphics Forrun Vol.20 (2001) p.359-367
- [2] The lattice Yang-Mills theory with a gauge-invariant gluon mass in view of the gaugeinvariant BEH mechanism towards confinement, A.Shibata, K.-I. Kondo, R.Matsudo, S.Nishino, presented at Asia-Pasific Symposium for Lattice Field Theory (APLAT 2020), online Aug 4-7, 2020, https://conference-indico.kek.jp/event/113/

6. メニーコアプロセッサ演算システムにおける シミュレーションプログラムの研究開発

石川 正、松古 栄夫

超並列でかつ超低消費電力のメニーコアプロセッサは現在の高性能計算機の主流の一つ である。メニーコアプロセッサを利用した素粒子関連のプログラムの研究開発を行い、高 性能なアルゴリズムとチューニング技術を確立し、同時にシステムの消費電力を評価する ことを目的として、ExaScaler 社との共同研究を 2014 年 8 月に開始した。このため PEZY Computing 社のメニーコアプロセッサ PEZY-SC を搭載した「Suiren Blue(青睡蓮)」、第 2 世代の PEZY-SC2 を搭載した「Suiren2(睡蓮 2)」の運用を行っている。これらのシステ ムは液浸冷却によって低消費電力、高密度実装を実現している。Suiren2 は 2017 年 11 月 に HPL プログラム 788.2 TFLOPS の実行性能で消費電力 47.0 kW を記録し、Green500 リストで 2 位にランキングされた。2022 年度においては Suiren Blue は冷凍機の不調のた め運用を停止していた。 Suiren2, Suiren Blue システムは、冷媒の供給が困難になったた め、2023 年 3 月末をもって運用を終了した。

これまで Suiren システムを利用して行った研究活動については、KEK Annual Report 2022 のハイライト記事として報告される予定である。

Suiren2	主な諸元
Callonia	

最大理論性能	1,082 TFLOPS
プロセッサあたりの理論性能	2.8 TFLOPS
ノード数	48
ノードあたりのプロセッサ数	8
総メモリ容量 (PEZY-SC2)	24 TB
総メモリ容量 (ノード内)	1.5 TB

Suiren2 システム

PEZY-SC プロセッサは通常の CPU (ホスト) に対し、アクセラレータ (演算加速デバイ ス) として働く。従って、ホスト上で実行するコードからボトルネックとなる部分を特定 し、デバイス上のメニーコアで多重並列実行することによって高速化される。このような ヘテロジニアスな計算を行うためには、ホストとデバイス間でデータの転送が必要であり、 これを最小化するアルゴリズムの採用が不可欠である。またデバイス上では多数のコア (PEZY-SC2 の場合 1984 個) 上でコア当たり 8 スレッドによる並列実行となり、高速化の ためにはループ分割、メモリアクセス、スレッド交換、スレッド同期などを最適化する必 要がある。PEZY-SC プロセッサに対しては OpenCL に準拠した PZCL というライブラリ を利用して、このようなオフロードのためのコードを記述する。

2022 年度においては、これまで Suiren2, Suren Blue システムを利用して行ってきた、 以下のような課題について引き続き研究開発を行った。

(1) ファインマンループ積分に関する数値計算の研究

既存の C/C++言語から指示文で PEZY-SC2(PEZY-SC)で演算する部分のコードを自動的 に生成する開発環境を整え、いくつかの 3 ループのセルフエネルギーのファインマンルー プ積分(6次元、7次元積分)を実行する研究を進めた。

(2) 格子 QCD のシミュレーション

格子 QCD 計算において最も時間を要するフェルミオン行列に対する線形方程式解法に ついては、既に PEZY-SC プロセッサへコードを移植し、最適化と性能評価などを行った。 このコードをプロトタイプとして、OpenACC ディレクティブによるオフロードコードを PZCL に変換するコードジェネレータの開発を行った。

(3) 重力崩壊型超新星爆発シミュレーション

重力崩壊型超新星爆発の数値計算では、ニュートリノに対する Boltzmann 方程式と高密 度物質の流体方程式を結合して解く必要があるが、ニュートリノ輸送を記述する前者が律 速となる。これまでに球対称系および多次元系で、陰解法における発展方程式の係数行列 に対する線形方程式の反復解法、ブロック密行列の逆行列の解法、Bultzmann 方程式の衝 突項の計算について PEZY-SC 用コードを開発し、最適化と性能評価を行った。このコード に対しても、(2)で述べたコードジェネレータの適用を目指して開発を行った。

7. データ収集システム

鈴木 聡

Belle2, T2K 実験等のデータ収集システムの開発・運用に計算科学センターから鈴木が参加している。

7.1 Belle2 データ収集システムから KEKCC へのファイル転送方式 の改善検討

2022 年度中盤からは Belle2 実験が長期シャットダウンに入り、様々な改修が行われた。 従来、Belle2 データ収集システムから KEKCC へのデータ転送には、パッケージの依存 関係が小さく、設定等の運用コストが低いことから rsync (ssh なし)を使用してきた。しか し、rsync は二重チェックサム計算によって CPU が律速点となり 10Gbps を達成すること が出来ない。また、対象となるディレクトリ階層が広い場合、転送中にもディレクトリの全 探索が行われてしまうためディスクキャッシュを圧迫してしまう。CPU コアが多いからと いって多数の rsync を同時に走らせるとシークによってディスク I/O の性能も劣化するた め、2~3 個程度に抑えなくてはならず、ディスク・ネットワークの性能を十分に活用でき ていなかった。

オンラインでファイルが生成された後、可能な限り早く KEKCC 上にファイルをコピー し、フォーマット変換等を適用するため、rsync に代えて XRootD への移行を検討した。 XRootD は RHEL 系統の OS では標準レポジトリでバイナリパッケージが提供されており、 依存関係が小さいからである。機能が限定されており、深刻なセキュリティ脆弱性が出にく いことも選定理由の一つである。Belle2 実験のデータ収集システムは多段のプライベート ネットワークで基盤ネットワークから隔離されている上、オンラインストレージは多数の アドレスを持っているため XRootD が正しくサービス用 IP アドレスを決定することが出来 ない。そのため、Linux の Network Namespace 機能を使用して KEKCC へのデータ転送 用のネットワークを隔離し、systemd からはその Namespace 中に xrootd を起動するとい う方法でこの問題を対処した。XRootD によって KEKCC へのデータ転送は 2GB のデータ ファイルに対して 700MB/s~1GB/s 程度まで改善した。なお、RedHat Enterprise Linux の 8 系列では rsync が更新され、ブロックチェックサムを 1 種類しか実施しないオプションが 利用可能となり、XRootD の速度には及ばないものの CPU 負荷が低減でき次善策としては 引き続き利用可能である。

GRID 資源ではかつて主流だった gsiftp のサポートが打ち切られ、長距離データ転送も http ベースのものに移行している。XRootD も直接 http でのデータ転送が可能なので、有 効にしてあるが現時点では速度の性能差は特に見えていない。 さらにオンラインストレージ側でのファイルの生成方式が大きく変更され、従来はラン 中には1個のプロセスがファイルを高速に書き出しつつ2GBもしくは8GB単位でファイ ルを切り替えていく方式であったところ、多数のプロセスが並列処理しつつそれぞれが一 時ファイルを1つずつ生成することとなった。検出器からダミーデータを流して試験して みたところ、生成されたファイルの試験中に転送性能が20MB/s~200MB/s程度に低下し ていることが判明した。読み出すだけファイルの転送を行わなくても性能が低いことが判 明し、多数のファイルが同時に成長していくためファイルシステムの断片化が激しくなっ ていたことが原因と判明した。新しい方式のテストランで生成されたファイルは1つあた り5.4GBのサイズが10MB毎のフラグメントに分散しており、1ファイルが520~540個 にも断片化していた。XFSに対して同様のI/O条件でファイルを並列生成すると15~17個 程度の断片化で済み、元々の速度とほとんど変わらない性能を得ることが出来た。

Belle2 実験のオンラインストレージは長年の実績により ext4 でフォーマットしていた が、この問題を解決するため XFS へと移行した。XFS でも並列度が上がると症状が悪化す ることが想像されるため、実際にはフォーマットする際に RAID 構成と CPU コア数を勘案 する必要がある。

8. 深層学習による計算機資源の効率的活用

岸本 巴、中村 智昭

8.1 はじめに

近年、様々な分野において機械学習が応用されて注目を集めている。特に、深層学習は膨 大なパラメーター空間による表現能力の高さから、とても強力な技術となっている。しかし、 高い表現力の反面、大量の学習データが必要になるという問題がある。一般に、学習データ の収集はコストが高いため、ドメイン知識を用いるなど、限定的な学習データでも効率的に 学習できるような深層学習モデルを設計する必要がある。本活動報告では、グラフニューラ ルネットワーク(GNN)と呼ばれる技術に注目し、バッチジョブスケジューラーのワークロ ードログを効率的に処理する方法の研究についてまとめる。

8.2 研究の目的とこれまでの活動

本研究では、バッチジョブスケジューラーにおける計算ジョブの待ち時間を予測するこ とを目的とする。計算機クラスターの混雑具合によっては各ジョブが実際に実行されるま でに長く待たされる場合がある。ジョブの待ち時間を精度良く予測することが出来れば、ユ ーザーの研究計画やジョブスケジューリングの効率化に貢献できる可能性がある。特に、グ リッドコンピューティングのように計算機設備(サイト)が広域に分散している環境では、 ジョブ待ち時間予測に応じてどのサイトにジョブを投入すれば良いかの指標にもなる。

これまで、France Japan Particle Physics Laboratory (TYL - FJPPL)の研究課題の一つ として、KEK 計算科学センターと IN2P3 Computing Centre (CC-IN2P3)とで本研究に関 する情報交換が行われてきた。先行研究として、Boosted Decision Tree (BDT)と呼ばれる 機械学習手法を用いた研究が CC_IN2P3 グループによって取りまとめられている¹。

8.3 GNN と深層学習モデル概要

GNN とは、深層学習の入力データをノードとエッジで構成されるグラフとして扱う技術 である。バッチジョブスケジューラーの任意の時間の状態(スナップショット)を切り取っ た際に、スナップショット内にある実行中のジョブや待ち状態のジョブの関係性をグラフ

¹ Luc Gombert & Frédéric Suter, "Learning-Based Approaches to Estimate Job Wait Time in HTC Datacenters", https://link.springer.com/chapter/10.1007/978-3-030-88224-2_6

として自然に表現することが可能である。今回の研究では、各ジョブをノード、ジョブ同士の関係性をエッジとして状態を表現する。先行研究の BDT や単純な深層学習モデル(Multi Layer Perceptron Model, MLP)は固定長の入力データしか扱えないため、入力データの生成には制約がある。これに対し、GNN はグラフとして可変長の入力データを扱うことが可能であるため、バッチジョブスケジューラーの状態の情報を失うことなく効率的にデータを処理することが可能となる。

図1 深層学習モデル概要

図1は入力データをグラフとして表現している様子(図中の"Inputs")と、今回設計した GNN に基づいた深層学習モデル(図中の"Feature module"と"Classifier module")を示し ている。特に、Attention 機構と呼ばれる仕組み(GAT)を採用することでジョブの関係性の 重要度を学習するようになっている。ジョブの待ち時間を大きく時間で分けて、以下の表1 の定義で5クラスの分類問題として学習を行う。

クラス	1	2	3	4	5
待ち時間	1 分未満	1 分以上	10 分以上	1時間以上	10 時間以上
		10 分未満	1時間未満	10 時間未満	

表1 クラスの定義

8.4 Parallel Workload Archive と実験結果

有志によって公開されている Parallel Workload Archive (PWA)²にある各データセンタ ーのバッチジョブスケジューラーのワークロードログを利用して実験を行った。PWA から スナップショットを再構成し、深層学習モデルの学習と評価に利用した。合計 6 ヶ所のデ ータセンターの PWA に対して評価を行い、既存の BDT と MLP と比較して 0.3%・7.9%の 計算ジョブの待ち時間についての予測精度の改善が確認できた。また、ジョブの関係性の重 要度を示す学習パラメータ(Attention)の出力を解析することで、計算ジョブの待ち時間予 測においてはバッチジョブスケジューラーに最近投入されたジョブの情報がより重要であ るという知見を得た。この結果は TYL - FJPPL workshop³で報告し、また、JSSPP 2023⁴ に論文を投稿した。

² Parallel Workloads Archive, https://www.cs.huji.ac.il/labs/parallel/workload/

 $^{^3\,}$ FJPPL — Japan-France workshop on computing technologies

https://indico.in2p3.fr/event/28953/

⁴ JSSPP 2023, https://jsspp.org/

第 Ⅲ 部 資料

18. 著作

18.1 論文

18.1.1 査読有り

- <u>Jiro Suzuki</u>, Atsushi Takano and Yushu Matsushita, "Helical Microdomains with Homochirality Trapped in a Gyroid Network from Symmetric AB1CB2D Pentablock Quaterpolymer Melt Studied by Monte Carlo Simulation", Macromolecular Theory and Simulations, vol31 p2200015,2022, https://doi.org/10.1002/mats.202200015
- E de Doncker and <u>F Yuasa</u>, "Regularization of Feynman 4-Loop Integrals with Numerical Integration and Extrapolation", CCSA 2022, LNCS 13378, pp. 388–405, 2022, <u>https://doi.org/10.1007/978-3-031-10562-3_28</u>
- E de Doncker, <u>F Yuasa</u> and <u>T.Ishikawa</u>, "Numerical Regularization for 4loop Self-Energy Feynman Diagrams", Journal of Physics: Conference Series 2438(012147) 1-6, 2023.2, <u>https://doi.org/10.1088/1742-6596/2438/1/012147</u>
- Seokhee Park , Ryosuke Itoh , Diptaparna Biswas , Nils Braun , Markus Tobias Prim , Daniel Jacobi , Karim Trabelsi , Satoru Yamada , <u>Soh Y</u> <u>Suzuki</u> , Mikihiko Nakao , Takuto Kunigo , Dmytro Levit, "Upgrade of Online Storage and Express-Reconstruction System for the Belle II Experiment", IEEE Transactions on Nuclear Science, 10.1109/TNS.2023.3253517
- D. Levit, M. Bessner, D. Biswas, D. Charlet, O. Hartbrich, T. Higuchi, R. Itoh, E. Jules, P. Kapusta, T. Kunigo, Y.-T. Lai, T. S. Lau, M. Nakao, K. Nishimura, S.-H. Park, E. Plaige, H. Purwar, P. Robbe, R. Sugiura, <u>S. Suzuki</u>, M. Taurigna, G. Varner, S. Yamada, Q.-D. Zhou, "Trigger Timing Interface for the Read-Out Upgrade of the Belle II DAQ", IEEE Transactions on Nuclear Science, 10.1109/TNS.2023.3240161
- Y.-T. Lai, M. Bessner, D. Biswas, D. Charlet, T. S. Lau, D. Levit, O. Hartbrich, T. Higuchi, R. Itoh, E. Jules, P. Kapusta, T. Kunigo, M. Nakao, K. Nishimura, S. Park, E. Plaige, H. Purwar, P. Robbe, R. Sugiura, <u>S.Y. Suzuki</u>, M. Taurigna, G. Varner, S. Yamada, and Q.-D. Zhou, "Commissioning and Operation of the Upgraded Belle II DAQ System with PCI-Express-Based High-Speed Readout", IEEE Transactions on Nuclear Science, 10.1109/TNS.2022.3228288

- R. Akaho, A. Harada, H. Nagakura, W. Iwakami, H. Okawa, S. Furusawa, <u>H. Matsufuru</u>, K. Sumiyoshi, S. Yamada, "Protoneutron Star Convection Simulated with a New General Relativistic Boltzmann Neutrino Radiation Hydrodynamics Code", Astrophys.J. 944 (2023) 1, 60, DOI:10.3847/1538-4357/acad76
- K-I. Ishikawa, I. Kanamori, <u>H. Matsufuru</u>, I. Miyoshi, Y. Mukai,
 Y.Nakamura, K. Nitadori, M. Tsuji, "102 PFLOPS Lattice QCD quark solver on Fugaku", Comput.Phys.Commun. 282 (2023) 108510, DOI: 10.1016/j.cpc.2022.108510
- W. Iwakami, A. Harada, H. Nagakura, R. Akaho, H. Okawa, S. Furusawa, <u>H. Matsufuru</u>, K. Sumiyoshi, S. Yamada, "Principal-Axis Analysis of the Eddington Tensor for the Early Post-Bounce Phase of Rotational Core-Collapse Supernovae", Astrophys.J. 933 (2022) 1, 91, DOI: 10.3847/1538-4357/ac714b

18.1.2 査読なし

18.2 Proceedings

18.2.1 査読有り

- Issaku Kanamori, Ken-Ichi Ishikawa, <u>Hideo Matsufuru</u>, "Object-oriented implementation of algebraic multi-grid solver for lattice QCD on SIMD architectures and GPU clusters", Lecture Notes in Computer Science book series 12953, pp 218–233, Proceedings of 21st International Conference on Computational Science and Its Applications (ICCSA 2021), DOI:10.1007/978-3-030-86976-2_15
- Y. Akahoshi, S. Aoki, T. Aoyama, I. Kanamori, K. Kanaya, <u>H.</u> <u>Matsufuru</u>, Y. Namekawa, H. Nemura, Y. Taniguchi (Bridge++ Project), "General purpose lattice QCD code set Bridge++ 2.0 for high performance computing", J.Phys.Conf.Ser. 2207 (2022) 1, 012053, Proceedings of 32nd IUPAP Conference on Computational Physics (CCP 2021), DOI:10.1088/1742-6596/2207/1/012053
- <u>T. Kishimoto</u>, M. Morinaga, M. Saito and J. Tanaka, "Application of transfer learning to event classification in collider physics",

PoS(ISGC2022)016, https://pos.sissa.it/415/016/

- <u>Akihiro Shibata</u>, Seikou Kato, Kei-Ichi Kondo, "Magnetic monopole dominance for the Wilson loops in higher representations", Published in:PoS LATTICE2021 (2022) 085, DOI: 10.22323/1.396.0085
- K-I. Ishikawa, I. Kanamori, <u>H. Matsufuru</u>,
 "Multigrid Solver on Fugaku", PoS LATTICE2021 (2022) 278,
 Proceedings of 38th International Symposium on Lattice Field Theory (Lattice 2021). DOI: 10.22323/1.396.0278
- I. Kanamori, K. Nitadori, <u>H. Matsufuru,</u>
 "Wilson matrix kernel for lattice QCD on A64FX architecture", HPC Asia
 '23 Workshops: Proceedings of the HPC Asia 2023, 55–64, DOI:10.1145/3581576.3581610

18.2.1 査読なし

● 與那嶺 亮、

「KEK における脆弱性自己点検 PDCA サイクル高速化」、情報処理学会 第 57 回 IOT 研究会、

https://ipsj.ixsq.nii.ac.jp/ej/?action=pages_view_main&active_action=rep ository_view_main_item_detail&item_id=217897&item_no=1&page_id= 13&block_id=8

18.3 KEK 出版物

- Activity Report 2021 Computing Research Center, KEK Progress Report 2022-8, February 2023 D
- 金子 敏明、「Python3 プログラム:例題と問題」、KEK Internal 2022-1, https://lib-extopc.kek.jp/preprints/PDF/2022/2226/2226001.pdf

18.4 その他

特になし

19. 会議発表

19.1 国際会議

- <u>T. Nakamura, G. Iwai, T. T.Sasaki</u>, "The History of the Accept and Rise of Geant4, The History of the Accept and Rise of Geant4", International Symposium on Grids & Clouds (ISGC) 2023 in conjunction with HEPiX Spring 2023 Workshop, 2023.3.23, Taipei Taiwan, (~100 参加)
- <u>Kishimoto, K. Murakami, S. Suzuki,</u> "KEK site report", HEPiX Autumn 2022, 2022.10.31-11.3, Umea Sweden
- <u>T. Nakamura</u>, "KEK and KEK-CRC general report", Japan-France workshop on computing technologies, 2023.1.31-2.1, Lion France
- <u>Tomoaki Nakamura</u> on behalf of the operation team, "KEK Grid CA Report", APGridPMA meeting at ISGC2023, 2023.03.21, Taipei Taiwan
- <u>T. Nakamura</u>, P. V. D. Reest, "HEPiX Spring Workshop 2023 in Taipei Closing Remarks", HEPiX Spring Workshop 2023, 2023.3.27-3.30, Taipei, Taiwan
- <u>G. Iwai, S. Kaneko, T. Kishimoto, T. Nakamura, T. Sasaki, and S. Suzuki</u>, "KEK Site Report", HEPiX Spring 2022 online Workshop,2022.4.25-4.29, https://indico.cern.ch/event/1123214/
- <u>G. Iwai, T. Kishimoto, T. Nakamura, and S. Suzuk</u>i, "Site report on KEKCC and Grid system", FJPPL Japan-France workshop on computing technologies (2022). 2022.5.16-18, online , <u>https://indico.in2p3.fr/event/26306/</u>
- <u>G. Iwai, T. Kishimoto, K. Murakami, T. Nakamura, and S. Suzuki,</u>
 "KEK Site Report", HEPiX Spring 2023 Workshop (2023),2023.3.27-31, https://indico.cern.ch/event/1222948/
- <u>Akihiro Shibata</u>, "Study on the quark confinement based on the dual superconductivity"(poster), The 30th Anniversary Symposium of the Center for Computational Sciences at the University of Tsukuba, 2022.10.13-14, Tsukuba
- H. Nemura, Y. Akahoshi, T. Aoyama, I. Kanamori, K. Kanaya, <u>H. Matsufuru</u>, Y. Namekawa,

"Implementation of Lattice QCD common code to large scale parallel supercomputer with manycore and GPU architecture" (poster presentation),

30th Anniversary Symposium of the Center for Computational Sciences at the University of Tsukuba, 2022.10.14, Tsukuba, Japan

<u>Kishimoto Tomoe</u>, Morinaga Masahiro, Saito Masahiko, Tanaka Junichi,
 "Decay-aware neural network for event classification in collider physics",

Machine Learning and the Physical Sciences, 2022.12.3, New Orleans (Hybrid), <u>https://ml4physicalsciences.github.io/2022/</u>

- <u>Tomoe Kishimoto</u>, "Offline resource evolution for ML/DL", ML(Machine Learning) at HEP workshop in Japan, 2023.2.23-24, KEK Japan, <u>https://kds.kek.jp/event/44830/</u>, 119 名参加
- <u>Tomoe Kishimoto</u>, "Report on the study of optimization of batch job scheduler with Deep Learning", FJPPL — Japan-France workshop on computing technologies, 2023.1.31-2.1, CC-IN2P3 Frnace, <u>https://indico.in2p3.fr/event/28953/</u>, 15 名参加

19.2 国内会議

- <u>一井 信吾</u>
 "KEK サイトレポート"、第 25 回共同利用期間における Security Work Shop 2022、滋賀医科大主催、滋賀医科大 online Hybrid, 2022.12.13
- <u>鈴木</u> 聡
 "DNS クエリとレスポンスのログ取り"、第 25 回共同利用期間における Security Work Shop 2022、滋賀医科大主催、滋賀医科大 online Hybrid, 2022.12.13
- <u>柴田 章博、</u>近藤 慶一、"ゲージ非依存な BEH 機構に基づく Yang-Mills 理論の 質量ギャップとクォーク閉込め"、日本物理学会 2022 年秋季大会、2022.9.6-8、 岡山理科大学(岡山キャンパス)
- <u>柴田 章博、</u>近藤 慶一、"ゲージ非依存な BEH 機構に基づく Yang-Mills 理論の 質量ギャップとクォーク閉込め(II)"、日本物理学会 2023 年春季大会、 2023.3.22 – 25, online
- <u>鈴木 次郎</u>、高野 敦志、松下 裕秀、
 "ペンタブロック共重合体ブレンドによる二次元超格子構造の構築"、第 71 回高 分子討論会 2022 年 9 月 7 日 北海道大学 参加者 4000 人程度
- <u>松古 栄夫</u>、

"High Performance Computing for Lattice QCD", Workshop on Nonperturbative Analysis of Quantum Field Theory and its Applications, 2022.9.22、大阪大学会館、豊中市

- <u>與那嶺 亮、鈴木 聡、一井 信吾</u>、
 "KEK における脆弱性自己点検 PDCA サイクル高速化"、情報処理学会 第 57 回 IOT 研究会、2022.5.20, <u>https://www.iot.ipsj.or.jp/meeting/57-program/</u>
- <u>岸本</u> 巴、"加速器実験における転移学習の応用"、Machine Learning at Hign Energy Physics, 2020.7.8-9、東京大学、114 名参加、https://indico.cern.ch/event/1162214/

● 湯浅 富久子、

"ファインマン積分の数値計算法: DCM による電弱高次補正計算 IV"、日本物 理学会 2022 年秋季大会、2022.9.6 – 8、岡山理科大岡山キャンパス

19.3 その他 広報等

特になし

20. 会議出席(招待、座長等)

20.1 国際会議(招待・座長)

- H.Matsufuru, F.Yuasa, (workshop chair)
 Workshop on Computational Science and HPC CSHPC 2022, 2022.7.4-7, online, https://www.cs.wmich.edu/hpcs/cshpc22/
- T.Nakamura (track convener, session chair) HEPiX Spring 2022 Workshop, 2022.4.25-29, online HEPiX Autumn 2022 Workshop, 2022.10.31-2022.11.03, Umea Sweden HEPiX Spring 2023 Workshop, 2023.3.27-31, Taipei Taiwan
- T.Nakamura 2022 Joint workshop of FKPPL and TYL/FJPPL, 2022.5.16-18, online
- T.Nakamura (Meeting convener)
 HEPiX Board Meeting, 2023.3.28, Taipei Taiwan
 HEPiX Preparing Meeting, 2022.12.15,2023.1.17, 2023.2.21, online
- T.Sasaki (invited keynote talk),
 "The History of the Accept and Rise of Geant4, The History of the Accept and Rise of Geant4", International Symposium on Grids & Clouds (ISGC) 2023 in conjunction with HEPiX Spring 2023 Workshop, 2023.3.23, Taipei Taiwan, (~100 参加)

20.2 国内会議(招待・座長)

柴田 章博(座長)
 日本物理学会 2023 年春季大会、2023.3.25 25p2 後半

21. 会議開催

21.1 国際会議開催

21.1.1 開催 (主催者)

特になし

21.1.2 組織委員会委員等

 T.Nakamura (Program Committee) International Symposium on Grids & Clouds 2023, 2023.3.19-24, Taipei Taiwan

- T.Nakamura (board member) HEPiX Spring 2022 Workshop, 2022.4.25-29, online HEPiX Autumn 2022 Workshop, 2022.10.31-2022.11.03, Umea Sweden HEPiX Spring 2023 Workshop, 2023.3.27-31, Taipei Taiwan
- F.Yuasa, H.Matsufuru (共同主催者)、
 Workshop on Computational Science and HPC CSHPC 2022, 2022.7.4-7, online, <u>https://www.cs.wmich.edu/hpcs/cshpc22/</u>

21.2 国内会議開催

21.2.1 開催 (主催者)

特になし

21.2.2 組織委員会委員等

- 松古 栄夫(世話人)
 高性能計算物理勉強会(HPC-Phys: http://hpc-phys.kek.jp/)
 第 15 回 勉強会: 2022.7.1 online,
 第 16 回 勉強会: 2022.9.16 online,
 第 17 回 勉強会: 2022.12.14 online
 第 18 回 勉強会: 2023.2.8 online
- 中村 智昭(世話人)
 粒子物理コンピューティング懇談会、2022.9.7, online
 粒子物理コンピューティング懇談会、2023.3.25, online
- 一井 信吾
 第 15 回情報処理学会インターネットと運用技術シンポジウム (IOTS 2022)
 2022.12.8~9 オンライン-九州工業大学 hybrid 開催 プログラム委員
 情報処理学会 2022 年度第 5 回(IOT 通算第 60 回)インターネットと運用技
 術研究会、2023.3.16 オンライン-前橋工科大学ハイブリッド開催 座長

21.3 講習会等開催

21.3.1 機構外対象

 佐々木 節、村上 晃一、岡田 勝吾 Geant Japan 主催 Geant4 講習会、2022.12.14-16、九州大学西新プラザ、 <u>https://wiki.kek.jp/display/geant4/Geant4+Japanese+Tutorial+for+Detector</u> +Simulation+2022

https://www2.kek.jp/arl/highlight/20230215/index.html、参加者約 50 名

21.3.2 機構内対象

- 一井 信吾
 - ・ 高エネルギー加速器研究機構 DMZ ユーザー会 2022.12.23, 2023.1.12
- 與那嶺 亮
 - KEK 情報セキュリティセミナー online 各回概ね 70 名参加
 講師:九州工業大学情報基盤センター副センター長 中村 豊教授、2022.7.8
 講師:茨城県警本部、2022.12.19
 講師:株式会社ラック、2023.2.21
- 真鍋 篤
 - ・ DX 推進室との共同開催 Microsoft Power Platform 説明会、2023.3.22, online 約 60 名参加

21.4 その他

21.4.1 参加組織

特になし

- 21.4.2 展示等
- Super Computer 2022、KEK 展示ブース、Virtual Exhibits, 2022.11.14-17 https://sc22.supercomputing.org/