KEK Internal 2009-4 October 2009 A/H/M

平成14年度

KEK 技術賞 受賞論文集

The KEK Technology Prize 2002

大学共同利用機関法人 高エネルギー加速器研究機構

(E) High Energy Accelerator Research Organization

© High Energy Accelerator Research Organization (KEK), 2009

KEK Reports are available from:

High Energy Accelerator Research Organization (KEK) 1-1 Oho, Tsukuba-shi Ibaraki-ken, 305-0801 JAPAN

 Phone:
 +81-29-864-5137

 Fax:
 +81-29-864-4604

 E-mail:
 irdpub@mail.kek.jp

 Internet:
 http://www.kek.jp

序 文

平成21年度KEK技術賞專門部会

部会長 上野 健治

KEK 技術賞は平成12年度に発足し、これまでに優れた技術がその賞の栄誉 を受けられ、それぞれの受賞者はさらなる研鑽を積まれて機構のプロジェクト にかかわる技術の開発・発展に活躍され、技術賞受賞の成果は勿論、関連する 多くの実績と成果を残している。KEK 技術賞の高さは技術開発者から注目に値 するものといえる。

さて、この KEK 技術賞には技術伝承をするという目的も持っており、技術賞 受賞者の方々は必ずその成果を記録に残す、すなわち論文にまとめ公表するこ とが義務付けられている。ただ、技術者の場合、既に次のプロジェクトを担当 しているために、改めて報告書をまとめるとなると、相当な時間を要すること もあり得る。このようなことから、技術賞が設立された当時、関係者も含めま とめることに十分な配慮ができずに時間が過ぎてしまい、平成19年度に未発 表分の論文集がまとめられた時点でも間に合わない受賞分が残った。今回この 対象である平成14年度分が、ここに正式論文として提出されたので、報告し たいと考える。

機構を取り巻く新技術開発環境が激変する中においても、KEK 技術賞の価値 はなんら変わることはなく、今回の報告論文においてもその成果は、現在はも とより将来にも十分生き残る財産であることは、論文を読んでいただければ理 解されると思う。

今年度も技術賞の応募期間が始まっており、是非挑戦されることを希望しま す。

平成14年度 KEK技術賞 受賞論文

目 次

序文

受賞論文

1. ニュートリノビームライン250kA ホーン用パルス電源・・・・・・・・・・・・	1
鈴 木 善尋 (素粒子原子核研究所)	
2. ニュートリノビームライン用電磁ホーンシステム ・・・・・・・・・・・・・	48
山野井 豊(素粒子原子核研究所)	
編集後記・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	71

ニュートリノビームライン

250kA ホーン用パルス電源

鈴木善尋

高エネルギー加速器研究機構

素粒子原子核研究所、物理第四研究系

概要

ニュートリノビームライン用 250kA パルス電源装置の設計、開発で必要となること は、最初にパルス電流発生の電気回路の検討、ついで使用する部品、製作可能性、経 済性、耐久性、維持管理の容易さ、安全性等です。特に 250kA のパルス発生回路は検 討の結果、入手可能部品の定格と必要なパルス電流(250kA)には隔たりがあり、パル ス変圧器の製作が必要不可欠でした。次に検討、開発することは、12GeV-PS と同期し た 2 秒周期のコンデンサの充電回路、それに続く 250kA パルス発生回路、そして、そ れらの相互に連携した周期運転の制御回路です。また、加速器の停止、運転再開に連 動し、電源装置はコンデンサの放電、待機状態、再起動の自動運転も必要です。これ は実験ユーザの運転の負担を軽減します。ニュートリノビームラインに、このパルス 電源は 2 台使用され、途中、電源装置内部の導体の振動による折損の故障等ありまし たが、無事、ニュートリノ K2K の実験終了まで運転の続行ができました。

以下に、最初にホーン用 250kA(キロアンペア)の電源装置(パワー系統)の設計、 製作、その結果について、次に、ホーン電源のコントローラの構成、加速器との同期、 コントローラのプログラムについて報告します。

目次

- 1. 250kA ホーン用パルス電源について
 - 1-1. ホーンについて
 - 1-2. ホーンの形状・その電気的定数
 - 1-3. ホーンの運転(励磁)の方法
 - 1-4. コンデンサの放電によるパルス電流
 - 1-5. パルス変圧器の設計
 - 1-6. コンデンサの充電について
 - 1-7. 全体の回路構成、そのコントロール
 - 1-8. 全体のコントロール
 - 1-9. コンピュータからのパルス電源の運転
 - 1-10. パルス電源の仕様まとめ
 - 1-11. 設置

- 1-12. 運転結果
- 1-13. ホーン電流のモニターとインターロック(負荷の保護)
- 1-14. ホーン1とホーン2の加速器との同期運転
- 2. ホーン電源コントローラ
 - 2-1. コントローラの概要
 - 2-2. コントローラ仕様 (STD-bus カードラック) と使用カード IO マップ
 - 2-3. パルス絶縁基板
 - 2-4. コントローラ接続の詳細
- 3. ホーン電源コントローラの制御プログラムについて
 - 3-1. プログラムリストの構成
 - 3-2. カードの注意点、変更部分
 - 3-3. フローチャート1 (GPIBより設定データを受けた時の処理、運転開始)
 - 3-4. フローチャート2 (OPM0 の処理:ホーン電源、運転操作シーケンス部分)
 - 3-5. フローチャート3 (OP5の部分:正常にON、パルス運転に入る部分)
 - 3-6. フローチャート4 (パルス運転、タイムチャート)
 - 3-7. PLSOP の説明 (パルスオペレーション:加速器に同期したパルス運転)
 - 3-8. フローチャート5 (ホーン電源の停止 DC OFF 処理)
- 4. 運転記録を振り返って(トラブルの原因、改良)
- 5. J-PARC ニュートリノビームラインでの再出発
- 6. 参考文献
- 7. プログラムリスト

ニュートリノ第二電源棟内、第一ホーン電源

1. 250kA ホーン用パルス電源の設計

1-1.ホーンについて

このパルス電源を設計するに当たり、まず知らなければならない事は、ホーン電磁 石の電気的特性である。ホーン電磁石はパイ中間子を効率良く収束するように中心導 体、電流経路、形状が決定される。その形状をもとに電気的特性を計算する。

ホーン電磁石はニュートリノビームラインにおいて2台使用される。図 1-1 にホーン電磁石の配置と粒子の収束される様子を光学レンズ系と対比して示す。

図1-1. 光学レンズと電磁ホーンの比較

図-2は上流側のホーン電磁石(第一ホーン)についての電流の流れを示す。

設計の初期の段階には、ホーンの設計とパルス電源の設計が平行して進むので、ホーンの概略寸法を元に電気的特性は計算により見積もった。その値を元に電源を設計 することになる。ホーンに流す電流の要求は最大の場合 250kA(ターゲット直径 2 cm の場合、表面磁束5テスラ)

1-2.ホーンの形状・その電気的定数

表 1-1 にパルス電源の設計に用いたホーンの定数を示す。なおこの定数はホーン設の 初期の数値であり最終的に完成したホーンの数値とは異なる。

ホーンの定数(
材質・アルミ(100℃)	3.55E-08	$\Omega \cdot m$	
ターゲット	長さ	半径	
	0.5	0.005	
内部筒状導体	長さ	半径	厚さ
	1.8	0.06	0.002
外部筒状導体	長さ	半径	厚さ
	2.3	0.3	0.01
下流側円盤状端板	外半径	内半径	厚さ
	0.3	0.06	0.002

(上流側端面は省略)

表1-1. (初期の設計段階での値)

表 1-1 の値をもとに、ホーンの抵抗、インダクタンスを計算する。またホーンへの電 流供給用のブスバーについても計算し以下の値を得る。

(ブスバー:銅製 200W, 15t, 10d, 8000 L(2 枚重ね) 4回路並列)

	抵抗 μΩ	インダクタンス μΗ
ホーン	217	1.03
ブスバー	29.8	0.105
合計	217	1.14

表 1-2. ホーンの電気定数

1-3.ホーンの運転(励磁)の方法

ホーン系のインダクタンス、抵抗値をもとに電流の供給方法について検討する。

1) 直流によるホーン運転

ターゲット部での発熱量について考えてみる。 ターゲット部が直径 2 cm,長さ 50 cm とした場合には、抵抗は 56 マイクロオームとなり、直流 250 kA によるその部分の電 圧は 14 ボルト、損失電力は 3.5 MW となる。直流による励磁は実現できないことが わかる。 2) パルス電流による運転

ホーンの発熱は、ターゲット部が主であり、この部分は直接、水により冷却さ れる。発熱量はホーンの設計条件から、数キロワット以下に抑えることが要請さ れている。

ターゲット発熱量の計算条件					
電流	ピーク値	250	kA		
波形	サイン波	半サイクル	パルス幅		
ターゲット抵抗	亢値(20φ、50cm)	56	$\mu \Omega$		

パルス幅	5	4	3	2	msec
1パルス発熱量	8.75	7	5.25	3.5	k₩

表 1-3. ターゲットの1パルス電流による発熱量

表-3は、ホーンにピーク値が250kAのサイン波で半サイクル分の電流を流した時の発熱量とそのパルス幅の関係についての計算結果である。ホーンに安全に流せるパルス電流は、パルス幅がおおよそ3ミリ秒以下ならば良いことが分かる。

1-4.コンデンサの放電によるパルス電流

1) コンデンサの放電によるパルス電流

コンデンサはその内部抵抗が小さいことにより瞬時 に大きな電流(パルス電流)を取り出すことができる。 その放電電流の波形は以下の3つのタイプになる。 1)非振動的放電電流 2) クリティカルダンプされた放電電流

3) 振動的放電電流

放電電流の波形が2)の場合は、波形が1つの山を作

り、最短時間で電流波形が終息するものである。そのよ

うな条件となるLCRの関係は、 $R = 2\sqrt{L/C}$ である。ホーンの励磁電流がクリティカ

ルダンプ電流となる場合について検討する。ホーンに接続するコンデンサ容量 C 、 およびコンデンサの電圧E、ピーク到達時間 t_p を以下に示す。ホーンの条件として (1.14 μ H, 217 μ Ω)を用いる。

コンデンサ容量 C	96.8	F (ファラッド)
コンデンサ初期電圧 E	73.7	Volt
ピーク到達時間 tp	10.5	msec
コンデンサ蓄積電力	260	kW

表 1-4. ホーンにクリティカルダンプの振動電流を流す場合

表 1-4 から分かることは、ピーク到達時間が長く、ターゲット部発熱量が大きすぎ ることである。よって、このようなクリティカルダンプの放電電流ではホーンの運転 ができないことが分かる。この場合(クリティカルダンプ)の利点はコンデンサにか かる電圧が逆転せず、極性のあるコンデンサ(容量の大きい、電解コンデンサ等)の 選定が可能となることである。ホーンの要求を満たすためには、よりパルス幅の狭い、 発熱量の少ない電流を流す必要がある。

2) コンデンサによる振動的電流

以上検討してきた結果から、放電電流のパルス幅を狭めることが必要である。コン デンサの放電電流で、ホーンの発熱量の制限をクリアーする振動的な場合の検討結果 を表 1-5 に示す。この検討はコンデンサ、サイリスタが現実に入手可能な物の定格条 件を考慮し、製作の実現可能性について、下記の5項目について検討した。

- 1) コンデンサを最短距離でスイッチ、ホーンと接続できるか?
- 2) コンデンサの数量、その間の配線距離、抵抗、インダクタンス等?
- 3) サイリスタの定格制限による、並列、あるいは直列による回路の複雑化
- 4) コンデンサ、サイリスタの定格に近い厳しい運転による耐久性、寿命?
- 5) 放射線による維持管理の困難

検討の結果としては、コンデンサとホーンを直接つなぐ回路構成によってホーンの 運転は困難であることがわかった。

3) コンデンサによる振動的電流+パルス変圧器

コンデンサとホーン負荷の間にパルス変圧器を入れた場合について検討した。パルス変圧器の変圧比 n とし、コンデンサの電流が n 倍されてホーンに流れるように接続する。n について4から18までについて検討した。検討の結果 変圧比 n を 10 とし製作することを決定した。

表 1-6 にコンデンサを変化させた場合のホーンの励磁条件を示す。特にコンデンサの数量、サイリスタの段数等を考慮すると、コンデンサの容量が5から2ミリファラッドのところが最適な運転条件である。なお表 1-6 の結果には以下の数値がふくまれている

- パルス変圧器のインダクタンスと抵抗を2次側の負荷の10パーセントと仮定して加算する。
- ・ パルス変圧器からパルス電源間のケーブルを 325m mのケーブル、70 m 分を加 算する。

1-5.パルス変圧器の設計

パルス変圧器の使用により、ホーン、サイリスタ、コンデンサ等の定格の制限をう

コンデンサによるホーンの回磁 (振動的電流による-ペルス変圧器無し:コンデンサと直結)

	т	Ç	A	
	1.14E-06	2.17E-04	2.50E+05	
条	インダクタンス	抵抗	ピーク電流	

赸作	可能在	判定	不可	不可	不可	不可	不可	不可	
	全体	必要数量	6	4	2	5	8	48	
スタ	電圧制限	シリーズ数	0.078	0.105	0.222	0.678	0.954	2.121	
サイリ	4/μs制限	パラレル数	0.5	0.7	1.6	5.0	7.1	15.7	
	A [^] 2*s制限	パラレル数	5.5	3.9	1.8	0.6	0.4	0.2	
	コンデンサ	数量(500MF)	2000	1000	200	20	10, (13)	2, (13)	
		A^2*s	9.85E+07	7.09E+07	3.25E+07	1.04E+07	7.38E+06	3.31E+06	
		A/ μ s	1.59E+02	2.20E+02	4.81E+02	1.50E+03	2.12E+03	4.72E+03	
		CV^2/2	4.81E+04	4.42E+04	3.93E+04	3.68E+04	3.64E+04	3.60E+04	
		Ш	309	419	886	2712	3817	8484	
		ts	1.58E-03	1.13E-03	5.20E-04	1.67E-04	1.18E-04	5.29E-05	
		C(F)	1	0.5	0.1	0.01	0.005	0.001	

, , ,	<u> 回</u> 数)	300,000	20kA		
ロンドンキ 色 (パルス)	手命(バルス)	30,000	40kA		
	設計美	2000	60kA		
		kν	μ F	015H (mm)	kø
コンデンナ 市本 市	8.5	500	540W, 310D,	220	
		電圧	容量	寸法	曹重

	>	A	A^2*s	A/ μ s
zの定格)GX21	4000	4710	1.80E+07	300
サイリス5 SF3000	定格電圧	実効オン電流	電流2乗時間積	臨界オン電流上昇率

表 1--5

/ス変圧器使用)
<u>ار^</u>
励磁(.
é
こよるホーン
÷
シデ
П У

	1.2.9月11-11-11-11-11-11-11-11-11-11-11-11-11-		パルス変圧器については、2次側の10%分を仮定	
	kА	Нμ	μΩ	
	250	1.14	217	10
ホーンの条件	定格電流	インダクタンス	抵抗(+ブスバー)	変圧比

		最終	必要数量	1	2	2	2	3		
	ረ <u>ታ</u>	電圧制限	シリーズ数	0.886	1.184	1.480	1.775	2.442		
	サイリフ	A/ μ s制限	パラレル数	0.050	0.069	0.088	0.107	0.150		
		A^2*s制限	パラレル数	0.058	0.042	0.033	0.027	0.019		
		コンデンサ	牧量 (500 μ F)	20	10	6	4	2		
	I		A^2*s	1.04E+06	7.53E+05	5.91E+05	4.87E+05	3.48E+05		
			A/ μ s	15.0	20.8	26.4	32.1	44.9		
		P (kW)	CV^2/2	62.8	56	52.6	50.4	47.7		
			E (kV)	3.54	4.73	5.92	7.10	9.77		
			ts (msec)	1.66	1.2	0.95	0.78	0.56		
		刂数値	C(mF)	10	5	3	2	1	4미대 夂 //	
>		1次俱	R(m Ω)	33	33	33	33	33		
			Γ(<i>μ</i> H)	133	133	133	133	133		
			kА	25	25	25	25	25		

									_	
		ЛЧ	ΗĽ	1015H (mm	ду			回数)	300,000	
	コンデンサ	8.5	500	40W, 310D,	220		コンドンキ	寿命(パパルス回	30,000	
		電圧	容量	寸法	重重			設計身	2000	
		>	A	A^2*s	A/ μ s					
	スタの定格	4000	4710	1.80E+07	300					
	にとせ	定格電圧	実効オン電流	電流2乗時間積	臨界オン電流上昇率					
					低い方が良い	低い方が良い				
制限条件	低い方が安全	サイリスタの定格電圧	配電規定・電圧規格・部品の規格		寿命 使用電圧	パルスピーク電流				
	取り扱う電圧				コンドンキ					

Ē 20kA

40kA

2000 60kA

表 1-6

まくクリアーできることがわかった。ホーンのパルス電流を得るのに 10 対1のパル ス変圧器を使用することとし、その設計を行う。

1)変圧器の定格としての1次電圧

表-6からホーンの運転電圧として、コンデンサの5ミリファラッドから2ミリファラッドを想定すると、5k ボルトから 7k ボルトである。パルス変圧器の1次 電圧の定格は 10k ボルト (ピーク値)とする。

2) 変圧器・巻き線1ターンの電圧

1 次電流は 25k アンペア (ピーク値) であるから、パワー・P として、125MVA をえる。このことから変圧器の巻き線 1 ターンあたりの電圧として 1kV 程度が想 定されるが、巻き数 1 ターンを避けるため e=346 ボルト(rms)とする。

3) 変圧器・鉄心の磁束

この e と変圧器の鉄心の磁束 Φ の関係は

$$e = \frac{2\pi}{\sqrt{2}} f\Phi \qquad (\#\nu \vdash)$$

である。ホーンに流すパルスの半サイクルの時間を3ミリ秒とし、周波数 fとして 167 Hz を使用する。鉄心の磁束 Φ として 0.467 Wb (ウェーバー)をえる。

4) 変圧器・鉄心の断面積

鉄心の磁束密度として B=1 [T/m] を採用すると、鉄心の断面積は 0.467 mとなる。変圧器の積層鋼板の占積率等考慮し、製造のための鉄心断面積は 0.5 m²、寸法としては1mx0.5m とする。

5) 1次巻き線、2次巻き線のターン数(コイルの巻き回数)

1次と2次の巻き数比は10対1、よって変圧器2次電圧は1kボルトである。変 圧器の1ターンあたりの電圧は346V、ピーク電圧としては489Vとして、 1000/489=2.04より、2次巻き線のターン数を2回とする。1次巻き線のターン数は 20回となる。

6)コイルの巻き方

このパルス変圧器は大電流をホーンにバランス良く流すために、二次側の出力端子 を4回路分用意する。この1つの2次コイルは20ターンの1次コイルにより上下か ら挟まれるように配置する。このことにより、1次、2次コイルの結合を良くし、漏 れインダクタンスを少なくする。4つの1次コイルは並列に接続する。

7) パルス変圧器・数値のまとめ

変圧比	10:1	
1次定格電圧	10	kV
2次定格電圧	1	kV
1次巻線 巻数	20	П
2次巻線 巻数	2	П
鉄心断面積	1000~ imes~500	mm
磁束密度	1	Tesla
1次巻線 コイル数	4回路・並列	
2次巻線 コイル数	4回路	

8)巻線の導体断面積について

この変圧器で使用するパルス電流は、2秒に1回であることから、パルス幅を3 ミリ秒のハーフサイン波とすると、25kアンペアの実効値 *I*teは、

$$I_{1e} = 25kA \frac{1}{\sqrt{2}} \sqrt{\frac{3}{2000}} = 685 \ \mathcal{T} \vee \mathcal{T}$$

となる。

空冷式変圧器の電流密度は一般的に 1m m あたり 1 アンペア以下とするので、1 次 巻線として使用する導体断面積を 800m m とする。これは4 コイル分の巻線の値で あるから、4 分の1 とし 200 m m が 1 コイルの1 次巻線の断面積となる。同様な 計算により、2 次巻線の断面積(1 コイル分)を 2300 m m とする。

1-6.コンデンサの充電について

パルス電流を発生するためのコンデンサの充電方法について検討する。

コンデンサ Cに直列に抵抗 Rを接続し電圧 Eを加えた場合、コンデンサの充電電

流 Icは、 $Ic = \frac{E}{R} \varepsilon^{-\frac{1}{CR}t}$ となる。

このことから、定電圧源によりコンデンサを充電する場合には、充電電流が充電の初 期と終わりにおいて大きな開きがあることがわかる。この場合の充電器の定格は電圧 と初期の充電電流により決定されるため、充電する電力に比べ大きな定格の充電器が 必要となり不経済である。この点において充電は定電流により行うこととした。この ような充電を行うには充電器の出力電圧は時間とともに一定に増加させる必要があ る。コンデンサが必要電圧まで充電した(充電完了)後については、コンデンサの電 圧をパルス電流の発生直前まで一定に保つ必要がある。コンデンサの電圧を一定に保 つには、コンデンサに一定の電圧を加えておけばよい。以上からコンデンサに加える 電圧と時間の関係は図 1-3 となる。

図 1-3. 充電時にコンデンサに加える電圧と時間の関係

1-7. 全体の回路構成、そのコントロール

このパルス電流発生装置の構成要素は、充電器、コンデンサ、サイリスタスイッチ、 パルストランス、負荷としてのホーンである。これらの要素が結合され、装置として 加速器の陽子ビームの取り出し(約 2.05 秒周期)に同期して連続運転する必要から 以下のことを検討した。

1) 充電器とコンデンサの接続時の問題

先に検討したパルス電流を発生する回路の特性は、パルス電流発生後に大きな 逆電圧を発生しコンデンサが逆電圧で充電される。サイリスタスイッチは逆方向 の電流を通さないので、コンデンサにはその電荷が残ることになる。それは以下 の不都合を生じる。

- (1) この電荷は充電器に過大な逆電流として回りこむ込こと、
- (2) さらに充電電圧とコンデンサの電圧が逆極性であることにより、充電時 に充電器に短絡電流以上の過大電流が流れるという不都合を与えること。
 項目(1)についての不都合の解消は充電時には充電器をコンデンサに接続し、

充電完了後は切り離すことにより可能である。しかし、この部分の回路構成を実際の部品として考えると、機械的な高電圧スイッチを数ミリ秒の間、OFF (開放) とする動作を2秒周期で連続動作可能かどうかという問題が生じてくる。一般的 に電磁スイッチは動作電圧が加えられてから動作の完了までに数十ミリ秒必要 とすること、また動作回数による寿命が短いことなどから使用できない。半導体 のスイッチによる方法もあるが、回路部品の増加、複雑化を避けるため、結果と して適切なインダクタンスと抵抗により、充電器とコンデンサを接続し、瞬時的 な逆電圧による電流を阻止する方法を採用した。

2) コンデンサに逆に充電された電力の処理 この処理方法としては、抵抗により熱として消費放出する方法、あるいは、も う一度LC回路を通すことによりコンデンサの電圧の極性を反転し、電気エネル ギーを回生(再利用)する方法がある。後者については、ホーンに対して逆サイ クルのパルスは熱の発生量、耐久性から流すことができないので別のインダクタ ンス(L)を準備することになる。そのインダクタンスには機械的強度が十分あ り長期間のパルス運転に耐えることが要求される。今回はこのインダクタンスの 開発は後回しとし、抵抗でコンデンサのエネルギーを処理することとした。ただ し、将来的にエネルギーを回収できるようインダクタンスの接続端子を装置に用 意しておくことにする。

結果としてこの部分は、コンデンサに対して、逆の電圧のみを選択的に流すダ イオードと抵抗を直列に接続しておく構成となる。この抵抗値は、値によりパル ス出力波形に影響を与える。計算の結果おおよそ 80 ミリオームがコンデンサ、 ホーンの回路に対して臨界制動とする値である。この値を採用すると抵抗でのエ ネルギー消費の割合(ホーンに対しての)が小さいのでこの値以上を使用するの が良い。この抵抗値が大きすぎるとコンデンサのエネルギー消費に時間がかかる ようになるので適切な選定が必要である。抵抗値として 400 ミリオームを使用す ることとした。これによりホーンからのエネルギーはより多くコンデンサに回収 され、速やかに抵抗で消費されることになる。この時間に関することは、装置全 体のコントロールの設計に必要なことである。

3) 充電器についての検討

充電器に使用する電力は、KEK、カウンターホールの電磁石励磁用電力である 400 ボルトを使用することとした。直流出力 10 キロボルトまでの電圧をどのように制御するか検討した。以下の2つの方法が考えられる。

- (1) 整流変圧器の2次側を制御する
- (2) 1次側を制御する
- (1) については、電磁石用の直流電源に一般に採用されている方法で、2次側 にサイリスタ等、電力制御素子を接続する。この特徴は出力をフィードバ ック制御する場合に前向き伝達関数に不要な要素がないことにより応答速 度が良い。このホーン用のコンデンサを充電する場合には、サイリスタの 耐圧が3キロボルトほどであるため耐圧を確保するために、数段直列化す る必要がある。これは点弧回路の複雑化、高耐圧化を招き好ましくない。
- (2) これは整流用変圧器の入力側(400V)を制御する。二次側には多段のダイ オードの整流回路が付く。(1)に比べ簡略化される。出力についてのフィ ードバック制御は、前向き伝達関数の中に変圧器が入るため(1)に比べ 応答速度が制限される。

検討の結果、信頼性、メンテナンスの容易さを考慮し(2)を採用した。

また、KEK内での電力制御の内部申し合わせにより12相の電力制御を行うために 移相変圧器により、30度ずれた2つの3相電力を作り出す。そのそれぞれを3相 全波制御(6相制御)し、2つの整流用高圧変圧器に接続される。それぞれの二次 側にはダイオードブリッヂが接続される。その2組のダイオードブリッジは並列に 接続され、12相制御された直流出力が得られる。

1-8.全体のコントロール

このパルス電流の発生装置は、以上見てきたように、充電器、コンデンサ、コンデ ンサからサイリスタによるスイッチ、パルス変圧器、そして負荷であるホーンである。 そしてパルスの発生手順としては以下のようになる。

- 1) コンデンサの電荷がゼロであること
- 2) コンデンサの充電開始、電圧の上昇
- 3) 必要な電圧に充電後その電圧で保持
- 4) パルス発生直前に充電器を停止する
- 5) 充電器の停止、一定時間経過後サイリスタスイッチの動作可能の状態とし、 トリガー待ちとする。
- トリガー信号によりパルス発生。一定時間経過後にサイリスタスイッチの動 作を停止状態とする。
- 7) 充電器によりコンデンサの充電を開始する。

以上の動作を行うためにマイクロコンピュータをパルス電源装置内部に配置した。そ のマイクロコンピュータはさらに GPIB インターフェースにより上位のパーソナル コンピュータ等からこの装置が容易に制御できるようにプログラムした。(HMPSC: ホーン電源コントローラ)

1-9.コンピュータからのパルス電源の運転

このパルス電源装置に GP-IB 付きのパーソナルコンピュータを接続し、その HMPSC に対して、"D 5000" と電圧設定データを送る。この意味はコンデンサの 充電電圧が 5000 ボルトを意味する。このデータを受信後の HMPSC の動作を以下 に記す。

- 1) 電圧データ、ゼロ以外を受信
- 2) パルス電源のインターロックをチェックする
- 3) インターロックに異常がある場合は運転操作の中止、上位コンピュータに対して サービス要求の割り込みを発生。正常の場合は次のステップへ(以後の確認事項 も全て異常時には上記同様の動作をする)
- 4) 充電器の主開閉器を ON とする。その後3秒間待つ(点弧回路の安定化に必要 な時間)

- 5) ON 確認(以後 ON 確認は全ての動作に対して並行して処理される)
- 6) トリガー信号の入力を有効にし、パルス電源運転状態にする
- 7)加速器タイミング信号(TS)受信(ビーム取り出し20ミリ秒前)
- 8) 充電器(サイリスタ)の停止(OFF)をする。タイマー#1動作を開始する
- 9) 15 ミリ秒経過後に、サイリスタスイッチに対しての外部からのトリガーを有効 とするために、トリガーゲートをオープン(開)とする
- 10)加速器タイミング信号(TA)受信(ビーム取り出し1.1ミリ秒前)

11) TA 信号は HMPSC によりコントロールされたディレー回路を通りサイリスタ スイッチをトリガーする。コンデンサに充電されている電力はパルス変圧器を通して ホーンへ出力される。タイマー#2の動作を開始する

12)ビーム到着信号を受けた場合は、タイマー#2の内容を記録する(ビーム到着 時間の計測)

13) タイマー#1が25ミリ秒になったら、サイリスタスイッチのトリガーができ ないように、ゲートをクローズ(閉)する

14) タイマー#1が45ミリ秒になったら、充電器をON とする

15) タイマー#1の動作を変更し、952マイクロ秒のタイマーとする

16) 充電器の出力電圧を操作するレファレンス電圧発生用 DAC に最終電圧値となるデータをセットする

17) 952 マイクロ秒ごとの割り込みをカウントアップし、その値を DAC に書き込み、DAC の出力電圧を徐々に上昇してゆく

18) カウントアップ値が 2047 になったらカウントアップは停止し、充電器の出力 をその値で一定とする。またタイマー#1をリセットし時間の計測を開始する

19) コンデンサの電圧を測定し、データを記録する

20) 加速器からのトリガー信号(TS)を待つ

21) 10 秒経過しても TS 信号の無い場合は充電器を OFF とする。コンデンサの電 圧は放電抵抗により徐々に低下する。タイミング信号 TS,TA を受けることにより充 電を開始し正常のサイクルに戻る(加速器からビームの供給が無い場合にはコンデン サとホーンに対して無駄なストレスを加えないための策)

22) コンデンサの電圧は充電完了電圧である。正常であれば、充電完了から約100 ミリ秒後に加速器から TS 信号を受け取る。・・・上記の(8) へ戻りパルス電源の 運転を継続する。

停止の場合: コンピュータから "D 0"のデータを受けると以下の動作をする。 23)パルス運転の停止:次の一連の動作をすばやく行う。

- 1) マイクロコンピュータ内部の動作を制御する割り込みの停止
- 2)加速器からのタイミング信号のゲートを全て閉じる
- DAC クリアー、充電器を停止

- 4) 充電器入力側の主開閉器を開放(OFF)とする
- 5) OFF を確認し、動作の結果を上位コンピュータに対して GP-IB の割り込み 要求(SRQ)で報告する。

以上のように一連の動作が内部の HMPSC により処理される。このことにより上位 のビームラインを管理するコントロールコンピュータの負担はほとんど無いといえ る。またパルス電源装置の移動、セットアップが容易となる。

1-10.パルス電源の仕様まとめ

ホーン用パルス電源の概略仕様を以下に示す。また図 1-4 にパルス電源の全体の系統図を、図 1-5 に 250kA パルス変圧器の製作寸法を示す。

充電器部分

入力条件

4 2 0 V +1 0 %, -5 % 5 0 H z, 三相

出力

電	Ŧ.	8 5	50	0 V
電浴	巟		2	6 A
負荷	コンラ	『ン	サ	$6 \mathrm{mF}$
環境条	件			
温度			0~	-35℃
湿度			9 0	%以下

コンデンサ: 500 マイクロファラッドを 12 個内蔵し、接続数量を切り替えられる 構造とする。

パルス変圧器

1次電圧	(ピーク値)			1 0 K V
1次電流	(ピーク値)			2 5 K A
2次電圧	(ピーク値)			1 K V
2次電流	(ピーク値)		2501	ΧA
周波数				167Hz以上
変圧比		1 0	(巻数20	: 2)
空冷				
絶縁方式	H·種 モー	ルド型		
使用条件				
2秒周期(のパルスによ	る連続道	重転	

1 次電流ピーク値 25 KA

パルス幅 3 m s e c のコンデンサ放電電流

1-11. 設置

このパルス電源は2台製作された。この2台はニュートリノビームラインのターゲットステーション内のホーン2台に対し以下のような配線接続がされた。

1) パルス電源出力(25kA)パルス変圧器1次側まで

11k 高圧ケーブル(サイズ-150)70m 3本並列

パルス変圧器2次側4回路分からホーンまで
 主にアルミ板(幅320、厚さ15、間隔15、4回路分8枚)による配線接続、

長さ約 10m。

1-12. 運転結果

	第一ホーン	第二ホーン
パルス出力 kA	250	250
運転電圧(設定) V	5756	4525
コンデンサ mF	3. 5	4.0
交流入力 A	150	145

図 1-6 に充電器をコントロールする DAC の出力(レファレンス)電圧、また充電 器の出力(コンデンサ電圧)、充電電流の波形を示す。これは HMPSC により 2 秒周 期で充電器の制御が規則正しく行われていることを示す。また予定どおりコンデンサ が一定の電流で充電されていることが分かる。

図 1-7 には 250kA 出力時のパルス変圧器 2 次側の電流波形を示す。上の波形が第 ーホーンの電流波形、下が第二ホーンの電流波形である。そして、第二ホーンの電流 波形が第一ホーンの電流波形より 100 マイクロ秒遅れていることが確認できる。これ は HMPSC のディレー(遅延) コントロールによるものである。

図 1-8 はコンデンサがパルス発生後に逆電圧で充電された時に、充電器に流れ込む 電流を示している(上の波形)。下の波形は出力されたパルス電流の波形である。充電 器に回り込む電流はピーク値で約 60 アンペア、電流が 23 ミリ秒後にはゼロになって いることが分かる。これにより、この時以後、充電器を ON として充電を開始しても 安全であることが分かる。

図 1-9 は充電サイクルごとのコンデンサ充電完了電圧のバラツキを示している。横軸は2秒周期の充電回数である。充電器のコンデンサに対しての電圧設定精度が 0.23%程と分かる。

図 1-10 はホーン電源交流入力(400V)の電流波形であり、12 相の電力制御が行われていることが分かる。

図 1-6. 2秒周期の充電器の運転

波形

1:充電器レファレンス電圧(5V/div)
 2:充電器出力電圧(5kV/div)
 3:コンデンサ充電電流(10A/div)
 横軸: 0.5 s/div

図 1-7. 250kA 出力時電流波形

2台のパルス電源が加速器と同期し て運転中

(変圧器2次側の1回路分:62.5kA)

波形

ホーン1パルス電流(10kA/div)
 ホーン2パルス電流(10kA/div)
 横軸: 0.5 ms/div

図 1-8. 250kA 運転時、パルス電流出 力後、コンデンサは逆充電される。そ の時に、充電器に回り込む電流波形

(安全な範囲に制限され、23 ミリ秒
で終息していることがわかる)
4:充電器に回り込む電流 25 A/div
1:パルス出力電流(62.5kAp x4)
横軸:5 ms/div

図 1-9.

充電電圧の安定性 (第1ホーン用パルス 電源、250kA運転時)

変動幅 14mV 安定度 約 0.23%

図 1-10.

250kA パルス運転時 第2ホーン電源 交流入力電流波形 (145A-rms) 5-msec/div

1-13. ホーン電流のモニターとインターロック(負荷の保護)

ホーン本体への給電端子はホーン円筒に対して、電流が外側円筒(円周上)に均等 に分布するように4箇所(角度 90 度違い)の方向にある。外側円筒上の電流分布が 均一であることは、ホーンが正しくパイ中間子をホーンの中心軸上に収束する点で重 要であるばかりでなく、ホーン内部の中心導体に対しての偏った横方向の力の作用を 防ぎ、中心導体の折損破壊を防止します。このホーンへの4つの給電電流は CT によ りモニターされ、電流バランスが崩れた場合にはホーン電源の運転を停止します。図 1-11 にバスバーへの CT 組込部分を示します。CT は4 個あり、CT の中心を通過す る導体に横方向の力が作用しないようにバスバー内に組込ます。またこの部分には、 バスバー全体の抵抗値を調整するためのスライド抵抗(半固定式)が組み込まれてい ます(図 1-12)。

図 1-11. CT の組込(写真

は1回路部分)

CT:62.5kA(0.0001 V/A) Stangenes 社製 アルミ導体:15t,高さ 495、4 回路分全長 1700

図 1-12. スライド抵抗

上: CT, 62.5kA 測定用 中:抵抗 (SUS) 下:銅板、スライド銅板、 固定用タップ付 SUS 板. 抵抗値調整後にボルトに より固定する。 SUS 板 (280, 80, 10t) 10-M8, 3-9φ-50 長穴

ホーンへの4回路の電流は上記のCT4個により測定されます。アンバランスは、 CTの電流値をそれぞれCT1,CT2,CT3,CT4とし、OPアンプにより加算、平均し CT0を得ます。CT0とCT1~CT4の差をアンバランスとして監視します。この差は OPアンプにより容易に電圧として得られます。実際の測定回路は、CTからのパル ス電圧はメータで表示と監視が出来るようにピークデテクタ回路により2秒間保持 させます。リセットは加速器からのTA(ホーン・サイリスタスイッチ・トリガ信号: ビーム到着前1.1msec)で行います。この電圧をプラス・マイナス5000アンペア表 示のメータリレーに加えます。メータの上下限値1000アンペアを設定値として運転 を行いました(図1-13)。このメータ指示値が上下限値を超えた場合、接点信号によりホーン電源はインターロック回路が動作し停止します。

図 1-13.

ホーン電流のバランス監視 左 4 個のメータは CT1~CT4 のア ンバランス+/~5000A を表示、右の メータは CT4 個の合計 250kA を表 示.指示値は 2 秒間保持される。 (これはホーン 2 用の監視盤であ り、同じホーン 1 用監視盤も別にあ る)

1-14. ホーン1とホーン2の加速器との同期運転

ホーン1とホーン2はどちらも 250kA で運転する。ホーン1とホーン2はインダ クタンスが異なり、ピーク電流への到達時間が異なる。ビーム通過時にはどちらのホ ーンの電流も 250kA となるようにパルス発生回路のトリガーに時間の調整(ディレ ー)が必要である。試運転の結果、ホーン1については、加速器からの TA 信号によ り直接トリガーで良いことが分かった。ホーン2については、250kA ピーク値への到 達時間が 1msec であり、100 マイクロ秒のディレーが必要であった。図 1·14 にホー

ンの運転電流波形を示す、横軸 500 µ sec/div 縦軸 10kA/div。上はホーン1、下はホーン2の電流波 形である。ホーン2について、立ち上がりが 100 マイクロ秒遅く、ピーク点に同じ時間に到達して いることが分かる。

このディレーはホーン電源コントローラ (HMPSC)の機能により処理されている。GPIB コマンド"DL"による。4マイクロ秒を単位とした 1~255の範囲の数値、これにより4から1020 マイクロ秒の遅延を生じる。"DL"に続く1バイト データ(バイナリ値)+EOIを送る。

2. ホーン電源コントローラ(HMPSC)

2-1. コントローラの概要

ホーン電源コントローラは、ユーザ(運転者)と加速器、ホーン電源の中間に位置 し、ホーン電源を運転制御し、加速器のタイミングに同期させます。この装置の設計 が開始されたのは 1995 年からであり、Windows95 が出た時期であり、HMPSC の 主要部品はそれ以前のものとなる。実際、HMPSC のカード類は STD-bus (Z80)であ り、開発は NEC-9800 上でクロスアセンブラによりなされた。

図 2-1. HMPSC の開発時の状況 STD-bus ラックを使用 ラック上の小さな箱は ICE:インサーキットエミュ レータ(Z80開発装置)

アセンブラでの処理は、IO カード類、GBIP、CTC タイマー、DA コンバータの操作 (IN/OUT)が主であり、高級言語を用いても、さほど能率が上がるのものではない と思われる。Z80のメモリーが 64k バイトであり、またスピードは4 MH z クロック であり、CAMAC より速いか同程度である。ただこの装置は個々の末端の電源装置に 組み込まれるものなので、処理のスピードとしては、十分なものであった。 この装置の機能、特徴は以下の点である。

- PCより GPIB コマンドとして、充電設定電圧値を送ることにより、ホーン電源の運転は開始される
- 2. 運転の内容は、ホーン電源を加速器と同期させる、充電器の ON/OFF、コンデ ンサの充電、一定電流充電のためのランプ電圧の発生、充電完了後のコンデンサ 電圧の測定、サイリスタスイッチの安全なトリガー、ディレーの処理等である
- 加速器からのトリガー信号が一定時間停止した場合にはコンデンサ充電器を OFFとしコンデンサの電圧を下げ待機状態とする。再び加速器のタイミング信号 (ビーム取り出しのキッカー信号 TA)が来れば、運転を自動で再開する(ユー ザの運転業務の軽減)。

図 2-2 にホーン電源コントローラとホーン電源の接続を示します。ホーン電源コン トローラは小型なのでホーン電源内部に組み込まれます。

- コントローラとホーン電源の接続ケーブル類は以下の物です。
 - 加速器からの信号 50Ω 同軸ケーブル2本 BNC、(TA: ビーム取り出し 20msec 前、TS: ビーム取り出し 1.1msec 前)
 - ●GPIB ケーブル: 50Ω同軸ケーブル BNC (GPIB エクステンダへの接続)
 - ●J1:アナログ信号用コネクター、バンディ 12 極、電圧、電流モニター、充電 器の充電電圧制御用のレファレンス(参照)電圧
 - ●J2:シーケンス制御用コネクター、バンディ22極
 - ●内部インターロック詳細信号、フラットケーブル4本
 - ●充電器制御:50Ω同軸 BNC
- 2-2. コントローラ仕様(STD-bus カードラック)と使用カード IO マップ

ホーン電源制御用の STD_BUS (図 2-1) ラックの形状、仕様は以下のとおりです。

- 1. 基本となる STD バスのカードラックは基板が 21 枚挿入可能な標準形状のラックを 基に加工を行う
- 2. ラックの正面から見て左側に幅 3cm のパネルがあり、そこには電源スイッチ、5V, 12V のチェック端子がある
- 3. 正面から見て右側に幅 7.5cm のパネルがあり、そこには GPIB のコネクター、 GPIB のステータスの表示用の LED がある。LED, GPIB コネクターにはフラット ケーブルが配線され aSTD-115 (GPIB インターフェースカード)に接続できる構造 にする。aSTD-115 が配置される位置スロットは右側から6番目となる。

スロット番号(右側より)

- 1. 使用しない
- 2. 使用しない
- 3. 使用しない
- 4. パルス信号絶縁基板
- 5. aSTD-101 CPU カード
- 6. aSTD-115 GPIB カード
- 7. 16ch,12 ビット ADC (Astd-168)
- 8. TSTD-5 (外部レファレンス型 16bit-DAC)
- 9. TSTD-1 (16bit-DAC 40000 入力時 10V 出力)
- 10. TSTD-4: コネクター変換基板
- 11.16 チャンネル電圧変換基板
- 12. TSTD03:入力16点、接点出力8点
- 13. 入力 24ch-1
- 14. 入力 24ch-2
- 4. コネクターについて

正面から見て左側の上部のカードのガイドは取り除き、コネクターパネルを取

り付ける。このパネル上に配置されるコネクターは以下のもの

J1-バンディ 12 極コネクター 1 個

J2-バンディ 22 極コネクター 1個

BNC コネクター(絶縁されていること) 8個

BNC-には同軸ケーブルが配線され、パルス信号絶縁カードの LEMO

のコネクターに接続される。

- 5. BNC のコネクターには次の名称をつける
 - 1. 充電スタートトリガー入力
 - 2. トリガー直接入力
 - 3. トリガー遅延入力
 - 4. 充電器制御出力
 - 5. SCR トリガー出力-1
 - 6. SCR トリガー出力-2
 - 7. ビームタイミング入力
 - 8. 予備
- 6. 使用するカードと IO アドレスは下表のとおりです

ホーン電源コントローラのカードの IO マップ

IO アド	回路基板	機能	備考
レス			
00	Astd-101	ボートA	
01	Z80-PIO	コントロール	
02		ポート B	
03		コントロール	
04	Astd-101	CTC-0	
05	Z80-CTC	CTC-1	
06		CTC-2	
07		CTC-3	
10	Astd-115	INT0	
11	GPIB	INT1	
12	TMS-9914	アドレスステータス	
13			
14			
15			
16			
17		データイン/アウト	
18	Astd-115	ポートA	
19	Z80-PIO	コントロール	
1A		ポート B	
1B		コントロール	
1C	Tstd-02	ボートA	リレー接点出力
1D	8255	ボート B	フォトカプラ入力
1E	ディップスイッチ	ポート C	フォトカプラ入力
1F	6-1 にたいして	コントロール	

20	Tstd-01	この出力は Tstd-05 の	9c40H=10.000V
21	16 ビット DAC	レファレンスとなる	low→high
22	Tstd-05	ランプ電圧発生用	ext-ref
23	16 ビット DAC	DAC	0000h→0ffffh
24	Astd-168		内部電圧測定用
25	12bits-16CH-ADC		
28	Tstd-04		充電完了電圧
29	ADC		測定用
2A	AD1170		
$2\mathrm{B}$			
$2\mathrm{C}$	Astd111	ボートA	
2D	24 ビット入力	ポート B	
$2\mathrm{E}$	カード (1)	ポート C	
$2\mathrm{F}$		制御用ポート	
30	Astd111	ボートA	
31	24 ビット入力	ボート B	
32	カード (2)	ポート C	
33		制御用ポート	

2-3. パルス絶縁基板

パルス絶縁基板はホーン電源の運転で以下の重要な働きをします(回路図 2-3)。

- 加速器からのタイミング信号を絶縁、TTLに変換し、内部コンピュータに渡す
- サイリスタスイッチトリガー信号を適切な時に通すようにパルス発生回路のゲートのブロック、ディレーを行う
- ホーン電源充電器の ON/OFF 制御の信号を発生する
- ホーン電源の試験運転時のための回路(擬似 TA 信号発生回路)
 - この回路を使用する時は、ホーン電源へTS信号のみ加えれば良い。ファン クションジェネレータで 2.05 秒周期のパルス(電圧 5~10V)信号を川得 る。パルス絶縁基板内部の[テスト運転用ジャンパー]を閉じる。
 - ▶ ホーン電源のインターロックのリセット(ホーン運転可とする)
 - ▶ HMPSC に GPIB を通し、"D 1000"等のコマンドを送る
 - ▶ 停止は "D 0"である

2-4. コントローラ接続の詳細

ホーン電源コントローラとホーン電源の接続コネクターの機能について示します。コ ントローラ内部で使用するカードは標準(STD-BUS)です。入出力に使用するICはZ80、 8ビット系でありプログラムとの関係は後述のプログラムリストのIOの定義に示されま す。

TSTD-03 カード関係の配線について(コネクター変換基板:図2-4,図2-5)

コントローラの内部のカード TSTD-03(TE261), aSTD-111 入出力コネクターはコネクター変 換基板(TE427)に接続される。それらの接続は以下のとおりです。

- カード TSTD-03(TE261)の CN1 ----- コネクター変換基板: TE427- CN3
- カード(1) aSTD-111 の CN1------ コネクター変換基板: TE427-CN2
- カード(2) aSTD-111 の CN2------ コネクター変換基板: TE427-CN3

下表はカード **TSTD-03**(**TE261**)のコネクター**CN1**の機能で、ホーン電源のインターロッ クリセット、**ON/OFF**操作、重要なステータスの読み出しが出来ます。

入力番号	信号名	接続先	備考
PB-0	コントロールハ゜ワー ON	コネクター変換基板	
1	リモート	J2-R/S	変換基板を経てJ2へ
2	レディー	J2-T/U	変換基板を経てJ2へ
3	DC-ON	J2-V/W	変換基板を経てJ2へ
4	極性	J2-C/D	変換基板を経てJ2へ
5	ヒューズ、異常	コネクター変換基板	シーケンサーMD-N0.7 へ
6	入力系温度異常	コネクター変換基板	シーケンサーMD-N0.7 へ
7	コンデンサ異常	コネクター変換基板	シーケンサーMD-N0.7 へ
PC-0	高圧スイッチ異常	11	シーケンサーMD-N0.7 へ
1	過電流	11	シーケンサーMD-N0.7 へ
2	地落電流検出	11	シーケンサーMD-N0.7 へ
3	ファン異常	11	シーケンサーMD-N0.7 へ
4	扉開/点検中	11	シーケンサーMD-N0.7 へ
5	ホーン磁石異常	11	シーケンサーMD-N0.7 へ
6	外部1異常	11	シーケンサーMD-N0.7 へ
7	外部2異常	11	シーケンサーMD-N0.7 へ

(1) TSTD-03 の入力ポートと接続信号

(2) TSTD-3 接点出力系の接続信号

接点番号	信号名	接続先	動作(接点出力)	
PA-0	リセット	J2-A/B(変換基板)	一時的に接点を閉じる	
1	DC ON	J2-L/M(変換基板)	DC-ON 時 接点閉	
2	転極-操作	J2-H/J(変換基板)	一時的に接点を閉じる	
3	リモート	使用せず		х
4				
5				
6	定電流制御	電流電圧制御回路基板	定電流制御の時 接点閉	х
7	定電圧制御	11	定電圧制御の時 接点閉	х

コネクター変換基板とホーン電源の接続

コネクター変換基板は以下のものと接続される。(コネクター変換基板回路図 2-4, 図 2-5. 参照)

- 2. J2:ホーン電源本体のコネクター (J2)
- 3. ホーン電源シーケンサーのコネクター (フラットケーブル)
- 4. 12V(+:tstd03のコネクターのピン番号 19,21,23,25 -:J2の R,T,V,C

コネクター変換基板とホーン電源内部のシーケンサーとの接続

コネクター間の接続は以下のとおりです。

- コネクター変換基板 SEQ-CN1-----シーケンサモジュール No7.-CN1
- コネクター変換基板 SEQ-CN2-----シーケンサモジュール No7.-CN2
- コネクター変換基板 SEQ-CN3-----シーケンサモジュール No8.-CN1
- コネクター変換基板 SEQ-CN4-----シーケンサモジュール No8.-CN2

コネクターの信号は下表のとおりです。

モジュールNo. 7-CN-1

ピン番号	信号 機能	コイル番号
A1	シーケンサー電源 ON	120
A2	遠隔モード	121
A3	準備完了	122
A4	運転中 表示	123
A5	(極性)	124
A6	ヒューズ、過電流、過電圧	125
A7	入力系温度異常	126
A8	コンデンサ異常	127
B1	高圧スイッチ異常	130
B2	パルス出力過電流-外部9インターロック	131
B3	地落電流検出-外部10インターロック	132
B4	ファン異常	133
B5	非常停止、扉、点検中	134
B6	ホーン電磁石異常	135
B7	外部インターロック 1	136
B8	外部インターロック 2	137

モジュールNo. 7の-CN-2

ピン番号	信号 機能	コイル番号
A1	SCR 変換器扉開放	140
A2	SCR 変換器アースフック	141
A3	SCR 変換器ファン停止	142
A4	SCR 変換器過電流	143
A5	直流過電圧	144
A6	高圧トランス盤温度異常	145
A7	単巻トランス2過熱	146
A8	単巻トランス3過熱	147
B1	直流リアクトル過熱	150
B2	高圧トランス盤扉開放	151

B3	高圧トランス盤アースフック	152
B4	高圧トランス盤ファン停止	153
B5	高圧トランス盤非常停止スイッチ	154
B6	コンデンサ1異常	155
B7	コンデンサ2異常	156
B8	コンデンサ3異常	157

モジュールNo. 8のコネクターCN-1

ピン番号	信号 機能	コイル番号
A1	コンデンサ4常	160
A2	コンデンサ5異常	161
A3	コンデンサ6異常	162
A4	コンデンサ7異常	163
A5	コンデンサ8異常	164
A6	コンデンサ9異常	165
A7	コンデンサ10異常	166
A8	コンデンサ11異常	167
B1	コンデンサ12異常	170
B2	高圧スイッチ異常	171
B3	コンデンサ盤過熱	172
B4	コンデンサ盤扉開放	173
B5	コンデンサ盤アースフック	174
B6	コンデンサ盤ファン停止	175
B7	SCR スイッチ盤過熱	176
B8	SCR スイッチ盤扉開放	177

モジュールNo. 8のコネクターCN-2

ピン番号	信号 機能	コイル番号
A1	SCR スイッチ盤アースフック	180
A2	SCR スイッチ盤ファン停止	181
A3	SCR スイッチ盤非常停止スイッチ	182
A4	電磁石異常	183
A5	外部インターロック 1(CT1 アンバランス)上限	184
A6	外部インターロック 2 CT1 下限	185
A7	外部インターロック 3 CT2 上限	186
A8	外部インターロック 4 CT2 下限	187
B1	外部インターロック 5 CT3 上限	190
B2	外部インターロック 6 CT3 下限	191
B3	外部インターロック 7 CT4 上限	192
B4	外部インターロック 8 CT4 下限	193
B5	外部インターロック 9 250kA 上限オーバー	194
B6	外部インターロック 10	195
B7		196
B8		197

ホーン電源本体(J1, J2)との接続

このコネクターは電磁石電源(ビームチャンネルグループ所有)の共通仕様になって います。 以下 J-1, J-2 の機能について示します。

ピン	機能 (アナログ信号系)
А	電流モニター(+) 出力
В	同上 (一)
С	電圧モニター (+) 出力
D	同上 (一)
Е	電流モニター シールド
F	電圧モニター シールド
G	プログラム電圧 (+) 入力
Н	同上 (一)
J	同上シールド

J-1 レセプタクル(バンディ)G2B14-92PNE、ケーブル側:プラグG6F14-92SNE

J-2 機能は直流電源の操作用接点信号の入出力用

レセプタクル(バンディ)G2B18-22PNE、プラグ G6F18-22SNE

ピン番	信号名		備考
号			
А	リセット	操作	
В			
С	極性状態	接点信号	クローズ:+
D			オープン:-
Е	COM	接点信号読み出し用	
F	電源過電流トリップ	接点信号 E-F 間	クローズ:異常発生
G	電源重故障発生	接点信号 E-G 間	ヒューズ等、
Н	転極操作	0.2秒により起動	
J			
Κ	電源漏水故障発生	接点信号 E-K 間	クローズ:異常
L	DC-ON 操作	0.2秒クローズにより起	電源側にて自己保持
Μ		動	
Ν	DC-OFF 操作	常時クローズ、0.2秒オ	電源内部の ON 自己保持
Р		ープンにより OFF	解除
R	リモート (状態)	接点信号	クローズ: リモート
S			オープン:ローカル
Т	運転可能(レディー)	接点信号	クローズ:運転可能
U			
V	DC-ON 状態	接点信号	クローズ: DC-ON 状態
W			オープン : DC-OFF 状態
Х	電磁石の状態	接点信号	クローズ:運転可能
Y			

※接点信号のやりとりは DC30V以下、50mA以下とする。

※接点 A,H,L,N には+の電圧がでること(外部の信号読み出し回路は)。

3. ホーン電源コントローラの制御プログラムについて

3-1. プログラムリストの構成

添付プログラムリストについて説明します。以下にホーン電源制御の重要部分のリスト行番号とその処理内容を以下に示します。ここで、CTCとは Z80 ファミリーのカウンター・タイマー、PIO は Z80 ファミリーPIO:入出力 IC。TS トリガーはビーム取り出し20msec 前の信号、TA 信号はビーム到着 1.1msec 前の信号

- 1~21 行:メモ、HMPSC の開発開始 1997/02/05~
- 22~104行:Z80アッセンブラの宣言、(コードセグメント)IOアドレス、レジスタの定義
- 106~239 行: データセグメント、使用する変数の定義
- 241 行~ : プログラム本体の記述、割り込み禁止、モード 2、スタックポインタの セット
- 249 行~:割り込みジャンプテーブル
- 259 行~: ICE での開発時に必要な番地指定のコード
- 263 行~: 文字列データ
- 269 行~: START0: 初期設定・・・2865 行 START1 へ続く
- 307 行~: GPIB 割り込み処理、GPIB 通信
- 2865 行~:ホーン電源運転操作部分のプログラム(ループ)
 - ▶ 2868 行~、OPMAIN:ホーン電源停止、GPIB からの指示待ちの状態のループ
 - ▶ 2880 行~、OPM3:出力の極性切り替えの有無を調べる(極性の切り替えには、 運転中の場合は停止が必要になる)
 - 28891 行~、OPM0、現在の電源の運転操作段階(OPF:オペレーションフラグ) を調べ、それを継続処理するために、その位置へジャンプする
 - ▶ 2972~、OP1, OP2 リセット操作、運転可能をチェックする
 - ▶ 3123~、OP3, 転極スイッチの操作、インターロックのリセット、チェック
 - ▶ 3239~、OP4, メインコンタクタ ON 操作、ON の確認
 - 3277~、OP5, 充電器出力電圧用のデータをセットする。(充電のタイミングは加速器からのトリガー信号、割り込みで処理される・・・別のプログラム)、 異常停止の有無をチェックする
 - ▶ 3431~、OP6, 電源の停止操作
- 3458 行~、PLSOP:パルス運転開始部分、call PLSLP1:CTC カウンター・タイマ ー、PIO の割り込み設定(加速器との連動のパルス運転は、加速器からのトリガー 信号により割り込み処理される)
- 4354 行~、PIOINT: PIO からの割り込み処理。TS トリガー割り込みの場合は TSTRG ヘジャンプ、TA トリガー割り込みの場合は TATRG ヘジャンプ、ビーム通

過信号の割り込みの場合は MEGBT (TA 信号からビーム通過までの時間を計測) へ ジャンプ。

- 4367 行~、TATRG: TA トリガー受信時の割り込み処理、この時にハードウェアー によりサイリスタスイッチが ON となり 250k のパルスが発生する。それに平行して のコントローラ内部での処理です。以下の処理をします。
 - ▶ TS~TA トリガー信号間の時間を計測する。TATM に保存
 - ▶ PIO割り込みを変更し、ビーム到着時間を計測できるようにする
- 4402 行~、TSTRG: TS トリガー信号(ビーム到着 20msec 前)受信時の割り込み 処理、以下の処理をします。
 - ▶ 充電器の停止(電力制御部)をOFFとする、DAC2のクリアー
 - ▶ CTC1を1msecタイマーとして起動
 - ▶ ディレーを CTC0 に設定
 - ▶ CTC3を用いてビーム到着時間計測準備、PIOの割り込み設定等
- 4465 行、MEGBT:ビーム到着時間計測タイマーの読み出し、BMT に書き込む

▶ 4483 行、CTC1INT: 1msec の割り込みをカウントし以下の処理をします

- ▶ 割り込み時に STEP2 の値を1増します
- STEP2(カウント値)が15の時(TS信号後15msec)、250kAサイリスタスイ ッチトリガーのゲート(安全装置)をオープンにします。これ以後TA信号が来 るとサイリスタスイッチはファイアー(点弧:ON)します
- STEP2 の値が 25 の時、250kA サイリスタスイッチのトリガーゲートをクローズ (OFF) します。以後、パルスの発生信号をブロックします
- ▶ STEP2の値が 60の時、充電開始の処理をします

- 4509 行、CHGST: 充電開始タイマーセットアップ等の以下の処理
 - ▶ DACの最終電圧値の値をセットする(DAC2の設定はまだ0、最終出力はDACの値により決まる
 - ・ 電圧上昇時間(電圧ステップ幅)のセット、2秒でフルの場合はステップ(上 昇幅)20H (16bit-DAC、40000が10V上限)、4秒で上昇の場合は10H
 - ▶ 充電器 ON、CTC2 の設定、952 マイクロ秒ごとの割り込み発生にセット
- 4595 行、CTC2INT: CTC2 タイマー割り込み、
 - PLSST の値が4の場合は、充電器 ON、充電中の割り込み。DA2UP の処理を 実行
 - ▶ 上記以外 (PLLST<>4)の場合、充電完了 TS 信号待ちの状態。変数 T250A を インクリメントし、1の場合には充電電圧測定用 ADC の値を読み込む。さらに T250の値が 250の場合(充電状態で 12.5 秒後)は TS 信号タイムアウト(加 速器からの信号異常)として、充電器の停止(OFF)と CT アンバラ監視装置リセ ット用のパルスを外部へ出す(充電完了端子 BNC)・・・この部分が変更
- 4684 行、CHGOFF: 充電器 OFF、250kA サイリスタスイッチトリガーゲートをクローズ(閉)、トリガー不可とする
- 4696 行、CHGON: 充電器 ON の処理(出力電圧の設定は DAC, DAC2 による)
- 4705 行、GPIB の通信で使用する文字列(コマンドのチェック用、送り出し用の文字列)と数値処理用のデータ(実数)、その他定数等
- 4872 行、プログラム最後の行 END これ以後の行は、マクロとして CMDCK が使用 されている。それ以後の行にシンボルが使用されているメモリー番地を示している

3-2. カードの注意点、変更部分

aSTD-115 GPIB インターフェースカードは、Z80CPU ボードと STD-bus によって接 続されます。aSTD-115 の GPIB インターフェース、テキサスインスツルメンツの TMS-9914 の割り込みはレベル割り込みです。aSTD-115 のカードには不都合な部分があるので変更しま す (図 3-2)。Z80 の割り込みモードは2でデージチェーンの割り込みを使用します。割り込み 順位は CTC カウンター・タイマーが高く、GPIB が下位です。GPIB は PIO を通して割り込 みをかけます。

図 3-2. TMS-9914 割り込み回路の変更(aSTD-115)

3-3. フローチャート1 (GPIBより設定データを受けた時の処理、運転開始)

メインーループ

備考)

*1. MDF は新しい設定データを GPIB から受け取った時にセットされる(747行、DSET0)

*2。リセットする理由は新たに設定データの受信をしたことを判断できるようにするため

*3. 運転開始用にデータを移す

*4. 転極器の操作が必要かの判断をする(出力の極性をプラスからマイナスに変更するような 場合、いったん電源を停止し、転極器を操作した後に電源の運転を再開する必要がある)。その ために設定データの操作を行う。極性の切り替え操作は OPM0 の中の OP3 で処理される。

3-4. フローチャート2 OPM0の処理:ホーン電源、運転操作シーケンス部分

3-5. フローチャート3 (OP5 の部分)

正常にメインコンタクタが ON になった時の処置、パルス運転に入る準備を行う

備考

- ・以前の電源(通常の)の場合は、ここで、電流設置値(DACD)の上昇、下降の処理を行っていた。パルス電源用に改造された部分である。OPF をクリアーし、ONF を1とすることによりパルス運転のループに移る
- ・DACアドレス 20H,21H
- ・変数 DACD、DACNT、DAC2D、MD、STEP2、ADCY0 データ、BMT
- CALL SETDAC の処理はパルス運転の処理の中で行う

3-6. フローチャート4 パルス運転 タイムチャート

3-7. PLSOP の説明 (2秒周期、加速器に同期したパルス運転部分)

① の処理 (パルス運転開始部分)

パルス電源の運転が開始された時と電圧値が変更された時にこの部分の処理に入る。

運転が最初に開始された時は、PLSF(パルス運転のフラグ)を1とし、②の処理を実行し、パルス運転に入る。PLSF がすでに1の時は、何も処理せずに OPMAIN へもどる。OP5(電圧設定)の処理において、REF の値が DACD に移されているので、パルス運転の処理において DACD の値は取り込まれて運転される。

② の処理について:充電の完了、又は充電の開始、充電スタートトリガ待ちの状態 処理する事

 CTC1 と CTC2 のタイマーを初期設定する。(CTC1、CTC2 によって運転が進行する時をパルス 運転モード 0 (PLSMD=0) とする。

(設定の内容)

CTC1:1ミリ秒タイマーとする。出力は CTC2 に入力されている。CTC2 はカウンターとして 用い、カウントデータとして 250 をセットする。CTC2 の出力は割り込み可能とする。ソフトによ り 250 ミリ秒の割り込みをカウントする。時間が 10 秒になった時には PSOFF を実行しコンデン サーの電圧を放電させる。但し TS のトリガーは待ちの状態とし、トリガーの受信により、充電を 開始し、運転状態に入る。

 PIOの割り込みの設定をする。加速器からの信号 TS を受けるため。PIOのビット3。立ち下がり エッジ(3マイクロ秒・パルス)。

③ の処理:**TS**トリガーを受信

- ・ CTC1,CTC2のタイマーを停止する。CTC1を1ミリ秒割り込み可能タイマーとしセットする。
- ・ CTC1タイマーのソフトによるカウントアップ。
- ・ この部分の運転状態を:パルス運転モード1 (PLSMD=1) とする。
- PIO による割り込みを変更し、TA 信号をソフト的に検出する。 PIO ビット 2. TA 信号のタイ ミングの位置の検査を行うため。

④PLSMD=1 において 15 ミリ秒後に、250kA パルススイッチのゲートを開とする。
⑤ TA トリガーの受信:

- ・ この信号は直接に 250kA サイリスタスイッチをトリガーする。
- ・ また、CTC3 のタイマーをトリガーしスタートさせる。この CTC3 のタイマーは 250kA パルスと ビームの時間関係の検査用です。
- ⑥ ビーム信号による割り込み:この割り込みにより、CTC3のタイマーを読み出します。
- ⑦ PLSMD=1 において 25 ミリ秒となった時、250kA パルススイッチのゲートを閉とする。
- ⑧ PLSMD=1 において 33 ミリ秒となった時、PLSMD=2 となります。
- ・ CTC1 をストップ、再設定します。952 マイクロ秒の割り込みにより、DAC 2 の設定を行います。 2048 のカウントアップにより、DAC2 の設定は完了、充電完了します。必要時間は 1.95 秒です。
- ⑨ 1.95 秒経過後、充電完了時には、CTC1のストップを行い、②の処理を実行します。ループとなります。

3-8. フローチャート5 OP6: ホーン電源の停止 (DC OFF) 処理

4. 運転記録を振り返って(トラブルの原因、改良)

ホーン電源1、ホーン電源2の K2K 実験での故障記録の一部を表 4-1、表 4-2 に示 します。これは、改良の記録でもあります。

2001年1月14日の変更:ホーン電源は、一度運転状態に入ると、異常が無い限り、 加速器からのトリガー信号により自動運転されます(初期1999年から)。ここでのソ フトの改良は、加速器がしばらく停止後に運転を再開した時に、以前はホーンのパル ス電流がいきなり250kAで出力されるのを改善し、徐々にパルス電流を増加させる 方式に変更しました(プログラムリスト3357行)。例えば、設定データ4700を受け 取った場合、最初のビームに同期したパルス運転の電源電圧の設定は0、次は250、 次は500、と250ステップで上昇し、4500、最後に4700となり、以後加速器が停止 するまで設定値4700でパルス運転を続行します。加速器が停止すると、12.5秒後に 充電器の停止、コンデンサの電圧を放電させます。ホーン電源は加速器からのトリガ ー信号(TA)ビームの待ち状態となります。TA信号が来ると上記の動作(パルス電 流が徐々に上昇し、設定値4700での運転が再開されます。

CT アンバランス監視装置は、アナログ回路で演算し、2 秒間のホールドを行って いるが、加速器の停止時し、10 分程度トリガー信号(TA)が来ない場合、監視装置 は、最後のアナログ値の演算結果をホールドしたままの状態となる。アナログ値を長 時間(数分間以上)ホールドすると、数分後にホールド回路のエラーが大きくなり、 メータリレー(判定値)の上下限値をオーバーし、ホーン電源のインターロック回路 が動作し、停止してしまう(ホーン電流のバランスが正常であるにもかかわらず、ホ ールド回路のドリフトにより)。これを防ぐために、パルス運転中に12.5 秒間以上ト リガー信号が途絶えた場合は、ホーン電源コントローラが CT アンバランス監視装置 のアナログデータをリセットするパルスを発生するように、2001年5月10日にソフ トの変更を行っています。このトリガー信号はダイオード2本により、加速器からの TA 信号と合成(OR)され CT アンバラ監視装置のリセット端子に加えられます。

過去の運転中に時々、過電流のトリップが発生していますが、最近になり、この原 因がはっきりと分かりました。この現象、過電流、異常停止についてはその都度、か なり、調べたのですが、異常原因が特定できず、処置できなかったことです。これは、 OP アンプの故障、劣化やノイズの問題ではなく、電気の端子の漏電、汚れ、湿気に よる絶縁の劣化であることが判明しました。充電器の出力電圧のフィードバック回路 へのデバイダ抵抗を固定している絶縁端子と、それを載せている絶縁板の絶縁抵抗の 低下です。樹脂製の絶縁端子は特に汚れに弱いです。それらはステアタイト製の物に 変更しました。特に高圧のデバイダ抵抗は高抵抗(10MΩ)です。高圧回路では、 部品の選定が重要であり、定期的な絶縁状況、汚れの点検、整備が不可欠であること がわかりました。

1999年	平成11年	F K2K二⊐	<u>ートリノビームライ</u>	ンの運転		処置
2月24日			パルス電源2のス	ナバー回路取付	(高圧整流ダ・	イオード)
3月18日		雷源 ∙第二	SCRスイッチ不良・	交換		• •
4月9日		里堂毎				
48148						175k A
4 <u>7</u>]14日 4日15日		<u> </u>		今却水不足		250kA
4 <u>7</u> 150 4 <u>7</u> 160			修理	第一ホーン	水泥り	150 175LA
		ホー ン	修理	- 第 - 小一 ノ	小雨10	130, 173KA
4月20日		雨石		1+		1751 4
4月30日					<u>一十半</u> /5/13	175KA
6月11日			第二	過電流	止吊復帰	
6月15日	14:45	電源・第二		過電流	止常復帰	1.15
6月15日	16:50	電源・第二		過電流	正常復帰	DAC交換
6月15日	19:50	電源·第二		過電流	正常復帰	
6月30日		電源•第一				(SP1003A-103, SW-ON信号 を6N137, U1 TP6(LS123)とす る
6月30日		電源·第二	改造 2台			ゲート回路
6月30日						
7月10日(土)		電源·第一	アンバランス	過電流		点検
7月11日(日)		ホーン	断線			点検の結果ホーンの断線
7月17日(日)		電源·第二	外部異常	冷却水不足		ポンプ軸受け水漏れ
8月5日		電源・第一		過電流	ヒューズ交換	
8月11日		電源・第一	ファン異常			-
8月12日	12.33	雷源 第一	ファン異営	過雷流	1	
8月12日	14.02	<u></u> 雷酒•笋—	<u> </u>		1	
8日10日	14.00		アンバラ			
		<u>电标 </u>	, , , , ,	今却水不足	工尚復倡	~ * 堵於
<u>8月20日(日)</u>		ホーノ	フトリップニノン述化		<u>止市復帰</u> 第一ホーンC め停止8:50。	」の補料 たートランス部接続調整のた
9月13日	17.00	电脲	ヘトリツノフィノ補順	§ 	の停止0.50**	-
9月16日	17:00				1作耒元」	
9月16日						
10月13日		電源・第二		過電流	止常復帰	
10月14日		電源・第二		過電流	正常復帰	
2000年						
1月13日	8:21	電源・第一		過電流		
1月13日	11:25	電源·第一		過電流	正常復帰	
1月13日	11:40	電源·第一		過電流	正常復帰	FB.Opamp交換、
1月13日						FB,CV基板調整、ゲインを落 としハンチングの防止
1月14日	0:49	電源・第一	調整			ダンプ抵抗0. 4-->
1月14日	1:00	電源·第一		過電流		
1月15日(土)	9:50	電源・第一		過電流		
1月15日(十)	10:23	雷源·第一		過雷流		
1月15日(十)	10:37			過雷流		
1月29日	17.03		宝 年 年 年 年 年 年 年 年 年 年 年 年 年 年 年 年 年 年 年			
2日 5日(十)	10.33	雷酒•笋—		過雷流		
2月 3日(上) 2日14日	10.00			起电加		
28140	10.40	电//ホ わー	判201000			ホーンの逆之破断
<u> 4 万 1 年 日</u> 2 日 1 日	10.00	雪 酒 - 笋一		调雷法	ł	
	10.00	电际历一	占长数进	迴电加		
<u>サガリ/ロ</u> 4日10日		电服				COD山 カ港フ 御たと
	00.00	电源 先一	305%文授	いていた		3016田刀蛹丁蚋伮16
3月19日	22:36	电调•弗—		迎电沉	ł	
	16:25			週電流	 	
<u>6月18日(日)</u>	16:40			<u> 週電流</u>		
6月18日(日)	16:45	電源・第二		過電流		<u> </u>
6月21日	17:50	電源・第一	CT1下限			
7月10日			内部調査			アルミ・フスバーの断線(1枚 目)
7月14日	8:43	電源·第二		過電流		
8月27日(日)	11:12	電源·第二		過電流		
9月12日	9:30	電源・第一		過電流		SCRSW異常あり
9月13日		電源・第一	SCR交換			
9月14日			horn新線判明	1	1	
-/					1	アルミ・ブスバーの断線(2枚
10月13日	16:45	電源·第一				

表4-1.運転記録 1

10月11日			ホーンテスト棟(第)	二電源)		運転開始
10月18日	8:15	電源·第一		過電流		
10月18日		電源·第二		過電流		
10月18日	8:20	電源·第二		過電流		
2001年						
1月14日(日)	5:47	電源·第一	CTアンバラ			
1月14日(日)	20:09	電源·第一	CTアンバラ			
1月15日	2:55	電源	CTアンバラ			
1月15日	7:55	電源	CTアンバラ			
1月16日	16:00	電源	CTアンバラ			
1月16日	23:29	電源	CTアンバラ			
1月17日	6:18	電源	CTアンバラ			
1月17日	10:05	電源	CTアンバラ			
1月19日	17:12	電源·第二	CTアンバラ			
1月20日	20:50	電源·第一	CT全電流			
1月20日	21:10	電源・第一	上に同じ			
1月20日	21:50	電源・第一	上に同じ			
3月2日	8:00	電源·第二		過電流		
3月5日	9:30	<u>電源 第二</u>		過電流		
3月8日	17:56	電源·第一	СТ			
3月8日	18:10	電源·第一	СТ			
3月9日	20:30		СТ			
3月10日(土)	9:30	電源・第一		過電流		
3月10日(土)	10:25			過電流		
3月12日	15:12			過電流		
	15:37			過電流		
	16:00			過電流		
3月22日	15:10			過電流		
3月23日	15:38			<u> 週電流</u>		
3月29日	19:30			道電流		
4月11日	1:15			道電流		
4月12日	14:55			迎電流		
4月15日(日)	13:50			道電流		
4月15日(日)	17:20			迎電流		
4月25日	17:58	電源•弗—		迴電流		
				電力制御回路O	N/OFF	Dゲートブロック回路はリレーによ
5月7日				り駆動されてい	た。この音	『分をフォトカプラに置き換える
5月10日			ホーン電源改良		1) 1000)以上のセット徐徐に上昇
					2) タイム	
					3) 充電	区間60m 秒
6月1日		電源	СТ			
7月1日	13:05	電源·第一	Fan			
7月1日	14:25	電源·第一	Fan			
7月1日	14:51	電源·第一	Fan			
7月1日	15:03	電源·第一	Fan			
7月1日	15:24	電源·第一	Fan			
7月1日	15:45	電源·第一	Fan			
7月4日	12:50	電源·第一	Fan			
7月7日	7:00	電源·第一	CT			
7月12日			異常なし			
7月13日			調整 運転			
•						
•						
•						
•						
•						
2004年				います		
11月6日(土)	6:30	電源・第一	美吊停止	迴電流		ホーン点
ļ				┨─────┤		
	╞───┤					
	╞───┤					

表4-2. 運転記録 2

5. J-PARC ニュートリノビームラインでの再出発

現在、東海 J-PARC でニュートリノビームラインの建設が進行中です。つくばでニ ュートリノ K2K 実験に使用されたパルス電源2台は、この J-PARC で再度使用する ために準備中です。発生パルス電流は320kA です。パルス変圧器は250kA 時に1テ スラの設計ですので、320kA 時に1.28 テスラであり、まだ鉄心の飽和には余裕が有 ります。ただ、導体の発熱(3kW 程度)については水により冷却します(2次導体 には水冷用の銅パイプが組み込まれている)。充電器はコンデンサの充電時間が加速 器の運転周期に連動し2秒から3秒に延びますので、逆に余裕が生じます。サイリス タスイッチについては、サイリスタの定格[電流2乗時間積:A²s]:1.8×10⁷で余裕 が有ります。また、臨界オン電流上昇率も 300A/µs で余裕が有ります。

J-PARC でのパルス電源の運転とメンテナンスについては、K2K で十分に虫だしが 済んでいますので、新規にパルス電源を製作した場合よりも良好な運転が維持できる と期待されます。もちろん、パルス電源は再利用ですから、建設費は~億円の単位で 節約できます。

6. 参考文献

- 1. Magnet Power Supply and Beam Line Control for secondary Beam Line K6, Y. Suzuki, et al. (ICALEPCS'91, JAPAN, Tsukuba)
- 2. Improvement of $\pi 2$ Beam Line Control, Y. Suzuki, et al. The 9th Symposium on Accelerator and Technology, Tsukuba, Japan 1993
- 3. 計測技術(GPIB), 技術部職員専門課程研修(平成9年度) KEK Internal 97-20. GPIB の応用
- Control and Timing of the 250kA Pulse Magnetic Horn, Y. Suzuki, et al. ICALEPCS'97, CHINA, Beijing. Section 5. P266-268.
- 5. ニュートリノビームライン 250kA パルス電源, 鈴木善尋 他. KEK Proceedings 99-20. P78-96.
- The Neutrino Beam line control system, Y. Suzuki, et al. ICALEPCS'99, Trieste, Italy. Proceedings P104-106.
- 7. ニュートリノビームラインのコントロールシステム, 鈴木善尋. 技術研究会報告、分子科学 研究所. No.16 P384-387.
- 8. コンピュータによる電磁石電源の維持管理, 鈴木善尋. 平成 14 年度技術交流会. KEK Proceedings 2003-4. P18-27.
- BEAM LINE CONTROL AND DATABASE, Y. Suzuki. Proceedings of PCaPAC2005, Hayama, Japan. KEK2005-18. WEP49.
- ビームラインの制御とデータベース,鈴木善尋. 平成16年度. 大阪大学総合技術 研究会. Proceedings. P2-14.

ニュートリノビームライン用電磁ホーンシステム

山野井豊

高エネルギー加速器研究機構 素粒子原子核研究所・ビームチャンネルグループ 〒305-0801 茨城県つくば市大穂1-1

概要

ニュートリノビームライン用電磁ホーンシステム は、長基線ニュートリノ振動実験(KEKのある筑 波と神岡間を結んで実験を行なうため"K2K実験" と呼ばれる。)のためのニュートリノ収束装置であ る。K2K実験は、筑波のKEK12GeV陽子加 速器で加速された陽子を用いて人工ニュートリノを 発生させ、250km離れた岐阜県神岡に設置され ている5万トンの水チェレンコフ検出器(スーパー カミオカンデ"SK")で、これを検出することに よりニュートリノ振動現象を確認する実験である。

電磁ホーンシステムは、この実験においてより多 くのニュートリノをスーパーカミオカンデに収束さ せる働きをする。

図1 K2Kニュートリノビームライン

はじめに

K2K実験は、ビームラインの建設、ビームライ ン要素装置の設計が1997年からはじまった。実 験は、1999年1月31日に始まり、同年6月1 9日に最初のニュートリノ事象の検出を行ない、現 在(2002年12月)までに56事象のニュート リノが検出されている。ニュートリノ振動現象が起 きないとしたときの推定値80.6事象に比べ実際 に検出された事象が少ない結果から、ニュートリノ 振動現象が起きている確率が約95%であることを 意味し、これはニュートリノと呼ばれる素粒子が0 でない有限の質量を持つことを示す有力な結果と成 っている。

この実験で用いられるニュートリノ粒子は、す べてつくば側で加速器によって人工的に作られたも のである。その過程は、12GeV 陽子シンクロトロ ンを用いて光速の99.7%まで加速された陽子を 取り出し、約120台の電磁石群を用いておおよそ 神岡の方角へこの陽子を輸送する。更に、この陽子 を約66cmのアルミニウム標的に照射し、パイ中 間子を大量に発生させる。このパイ中間子の生成と 神岡への高精度な収束を本電磁ホーンと呼ばれる装 置のなかで行なう。

次ぎに、このパイ中間子がミュー型ニュートリノ とミュー粒子に壊変するのを約200mのヘリウム ガスの充填された崩壊トンネル中で行なう。このよ うなステップを踏むことで射出時刻の判っている人 エミュー型ニュートリノが250km離れたスーパ ーカミオカンデに0.00083秒後に到達する。

電磁ホーン収束装置

電磁ホーンは、円錐と円筒のアルミニウム合金の 電気導体から成っている。この実験で使用する電磁 ホーンは2台を直列に置き使用し、上流側に設置さ れる第1ホーンは外形700mm・全長2371m m、下流の第2ホーンは外径1650mm・全長2 760mmの大きさである。共にアルミニウム導体 に大きなパルス電流を流し、二重導体の中空部分に のみ、トロイダル状の強力な磁場を発生させている。

K2K ホーンの特徴として、中心電流導体部が標的 となっていることが挙げられる。この内部導体の周 りに発生する磁場(最大 3.3 テスラ)を利用して、 アルミニウム標的で発生したパイ中間子を曲げ、次 ぎに崩壊生成されるニュートリノを神岡に向けて収 束させる。

2台の電磁ホーンとも生成したパイ中間子が導体 を通過する際に損失してしまうのをより少なくする ため薄いアルミニウム合金で作られている。また、 より収束性能を上げるために250キロアンペアー のパルス電流を通電して使用するため、直径30m m長さ660mmのアルミニウム標的やそれに肉薄 3mmの電気導体部分では密度の大きいジュール熱 が発生する。そのため、常時、内部は霧状に冷却水 を噴霧することで繰り返し発生する熱による金属疲 労、強度の低下を防いでいる。

本発表では、ホーン電磁石設計にあたって行った 磁場形状の最適化、構造強度の設計、運転して分か ったパルス励磁による振動や表面の酸化・腐食現象、 pH制御とトリチウム処理の問題などを紹介する。

Desistenee	197.10	20.8 0
Kesistance	107.1μ \$2	29.8 µ 52
Pulse width	2.5 ms	2.4 ms
Peak voltage	590 V	450 V
Excitation cycle	2.1 s	2.1 s
RMS current	5590 A	5590 A

Isotope	Half-life	Radioactivity concentration(Bq/cc)		removal rate %
		before	after	
Н-3	12.3 y	9.40e+2	9.89e+2	
Be-7	53.3 d	1.15e+2	1.17e-1	100
Na-22	2.6 y	9.85e-1	1.44e-3	100
Sc-46	83.8 d	7.46e-1	8.23e-3	99
Mn-52	6.0 d	3.11e+0	no detect	100
Mn-54	312.1 d	1.87e+0	no detect	100
Co-56	77.2 d	1.74e+0	4.47e-3	100
Co-57	271.7 d	2.46e+0	7.20e-4	100
Co-58	70.9 d	8.49e+0	no detect	100
Fe-59	44.5 d	1.49e-1	no detect	100
Co-60	5.3 y	2.47e-1	no detect	100
Zn-65	244.3 d	3.53e-1	no detect	100
Se-75	119.8 d	1.69e-1	3.04e-3	98
Rb-83	86.2 h	1.42e+0	no detect	100
Rb-84	32.8 d	2.11e-1	no detect	100
Y-88	106.7 d	2.78e+0	1.36e-3	100
Zr-88	83.4 d	3.94e-1	8.65e-3	98
Tc-95m	61.0 d	2.15e-1	no detect	100
Ag-105	41.3 d	4.34e-1	1.42e-2	97

Y. YAMANOI – KEK FEBRUARY 4, 2003

Resume (Jan.1999-Jul. 1999)

•	Jan.30	First Beam (Slow) to Neutrino Beam Line
•	Feb.3	First Beam (Fast) to Neutrino Beam Line
•	Feb.22	Horns were installed in Neutrino Beam Line
•	Mar.3 -	First Beam with Horn
•	Mar.12 -	K2K Data Taking Started
•		Horn = 175kA, 3Tprotons/spill on target
•	Apr.13	ν Beam Control at Horn = 250kA
•	Apr.14 -26	Trouble (5x10 ⁵ Horn Cooling Water Pipe excitations)
•		Horn = 5×10^5 excitations
•	May.9 -14	ν yield Study with Horn =175kA - 250kA
•	May.14 -	Horn Flexible Feeder Trouble (8.5x10 ⁵ excitations)
•	Jun.4 - 27	K2K Data Taking at Horn =200kA
•	Jun.19	First Neutrino Event in the Super-Kamiokande
•	Jul.8- 10	Horn Durability Test Horn =250kA
•	Jul.10	1st Horn Target Rod Break (1.9x10 ⁶ excitations)
•		New 1st Horn install (#03)
•	Jul.26-29	NBI 1999

Γ

		C /
Jul.26-29	NBI 1999	
Aug.22	Horn Durability Test	
	1st Horn (#03) =	2.8x10 ⁶ excitations @250kA
	2nd Horn (#01) =	5.1x10 ⁶ excitations @250kA
Oct.23	New Horns install (1	-#04 & 2-#02)
Oct.27	'00-Data Taking Start	
	Steady running	
2000		
Jun.21	Horn Strip Line Brea	k (4.3x10 ⁶ excitations)
	Run end (v 28/38)	
Aug.28~	Horn Durability Test	
	1st Horn (#04) =	5.0x106 excitations @250kA
	2nd Horn (#01) =	6.0x10 ⁶ excitations @250kA
• Sep.01~	Tests with end cap st	ructure
Sep.6-9	NBI 2000	
Dec.21~	Install new Horns	
2001		

Resume (Jan.2001- Feb.2003) Jan.12~ '01-Data Taking Start • Apr. 2001 (v 44/64) • **Steady running** \sim Jul.12 Run end (v 56/80.6) Jul.13 ~ Horn Durability Test 2002 ---1st Horn (#07) =10.0x106 excitations @250kA Feb.10 2nd Horn (#03) =10.0x106 excitations @250kA 1st Horn (#07) =12.0x106 excitations @250kA Apr. 2002 2nd Horn (#03) =12.0x106 excitations @250kA Dec. 2002 New Horns install (1-#08 & 2-#04) Dec. 2002 '02-Data Taking Start 2003 -----'02-Data Taking Start Jan.12~ **Steady running**

関連する論文、技術報告書リスト

- 1. Y. Yamanoi et al., Large Horn Magnets at the KEK Neutrino Beam Line, Proc., on Magnet Technology (MT15), p711-p714 (1997), KEK Preprint 97-225
- Y. Yamanoi et al., Large Horn Magnets at the KEK Neutrino Beam Line --- part2, IEEE Transactions on applied superconductivity, Vol. 10, No.1, p252- p 255 (2000), KEK Preprint 99-178
- 3. M. Ieiri et al., Magnetic Horn for a Long—Baseline Neutrino Oscillation Experiment at KEK, Proc., on 11th Accelerator Science and Technology, p377-p379 (1997)
- 4. Y. Suzuki et al., Control and timing of the 250kA Pulse Magnetic Horn, Proc., on Accelerator and Large Experimental Physics Control System, p266-p268, (1997)
- 5. 鈴木善尋、山野井豊、家入正治、加藤洋二、皆川道文、草野恵理奈、野海博之、田中 万博、高崎稔、 ニュートリノビームライン250kAホーン用パルス電源、KEK Proceeding 99-20, 第5 回加速器電源シンポジウム報告集、p78-p96, (1999)
- Y. Suzuki, Y. Yamanoi, M. Ieiri, Y. Kato, M. Minakawa, H. Noumi, K.H. Tanaka, M. Takasaki, The Neutrino Beam Line Control System, ICALEPCS'99, Trieste, Italy
- 7. Y. Suzuki, Y. Yamanoi, M. Kohama, M. Ieiri, H. Ishii, Y. Kato, M. Minakawa, H. Noumi, K.H. Tanaka, M. Takasaki, and K. Nishikawa, Control and Timing of the 250kA Pulse Magnetic Horn, ICALEPCS'97, CHINA, Beijing
- 8. M. Ieiri et al., Neutrino Beam Line for a Long-Baseline Neutrino Oscillation Experiment at KEK, Proc., on the First Asian Particle Accelerator Conference (APAC98), p579-p581
- 9. 宫本伸一、東京大学、理学系研究科物理学専攻、修士論文(1996)
- 10. 小浜光洋、神戸大学、自然科学研究科物理学専攻、修士論文(1997)
- Y. Suzuki, M. Ieiri, Y. Kato, E. Kusano, M. Minakawa, H. Noumi, M. Takasaki, K.H. Tanaka and Y. Yamanoi, GPIB Address Converter, KEK Preprint 2001-148, ICALEPCS 2001, San-Jose, California, USA, November 27-30 (2001)
- Y. Suzuki, M. Takasaki, M. Minakawa, H. Ishii, Y. Kato, M. Ieiri, K.H. Tanaka, H. Noumi, Y. Yamanoi, An Interface for the Neutrino Beam Line Control System, International workshop on control systems for small and medium scale Accelerator 1996, Tsukuba
- 1 3. K.H. Tanaka, Y. Yamanoi, E. Kusano, M. Minakawa, H. Noumi, M. Ieiri, Y. Katoh, Y. Suzuki, M. Takasaki, S. Tsukada, K. Yahata, Y. Saitoh and K. Katoh, Development of Radiation-Resistant Magnets for the JHF Project, IEEE Transactions on applied superconductivity, Vol10, No. 1, March 2000, KEK Preprint 99-86

- 1 4. K.H. Tanaka, Y. Yamanoi, M. Ieiri, H. Noumi, M. Minakawa, H. Ishii, Y. Katoh, Y. Suzuki, M. Takasaki, DEVELOPMENT OF RADIATION RESISTANT MAGNETS COILS FOR HIGH INTENSITY BEAM LINES, KEK Internal 97-215
- 1 5. T. Suzuki, M. Numajiri, S. Ban, Y. Kanda, Y. Oki, Y. Namito, T. Miura, H. Hirayama, K. Kondo, M. Takasaki, K.H. Tanaka, Y. Yamanoi, M. Minakawa, H. Noumi, M. Ieiri, Y. Kato, H. Ishii, Y. Suzuki, and N. Mokhov, SHIELDING DESIGN OF DECAY VOLUME AND TARGET STATION FOR NEUTRINO OSCILLATION EXPERIMENT USING MARS, KEK Preprint 97-16 SARE3 (1997)
- 1 6. T. Suzuki, M. Numajiri, S. Ban, Y. Kanda, Y. Oki, Y. Namito, T. Miura, H. Hirayama, K. Kondo, M. Takasaki, K.H. Tanaka, Y. Yamanoi, M. Minakawa, H. Noumi, M. Ieiri, Y. Kato, H. Ishii, Y. Suzuki, T. Shibata, K. Nishikawa, and N. Mokhov, Comparison between Soil Benchmark Experiment and MARS Calculation, KEK preprint 97-15 SARE3 (1997)
- 1 7. S. Yamada, K. Nakamura, T. Sato, M. Takasaki, K.H. Tanaka, M. Ieiri, H. Noumi, Y. Suzuki, H. Ishii, Y. Katoh, Y. Yamanoi, M. Minakawa, K. Kondo, H. Hirayama, T. Suzuki, T. Miura, and S. Takahara, DESIGN FOR THE RADIATION PROTECTION OF THE RADIATION CONTROLLED AREA AROUND THE KEK-PS NORTH COUNTER HALL, KEK Internal 97-12
- 1 8. S. Yamada, K. Nakamura, T. Sato, M. Takasaki, K.H. Tanaka, M. Ieiri, H. Noumi, Y. Suzuki, H. Ishii, Y. Katoh, Y. Yamanoi, M. Minakawa, K. Kondo, H. Hirayama, T. Suzuki, T. Miura, and S. Takahara, DESIGN FOR THE RADIATION PROTECTION OF THE MODIFIED EP2 BEAM LINE IN THE KEK-PS EAST COUNTER HALL, KEK Internal 97-11

編集後記

KEK技術賞は、高エネルギー加速器研究機構における技術上の優れた業績を表彰し、 もって広く技術の発展に資することを目的として平成12年度に創設された。

推薦された技術賞候補案件は、各研究所、研究施設、技術部及び管理局から選出された 委員による「KEK技術賞専門部会」において審査される。審査は各推薦者によるそれぞ れの技術内容紹介と技術開発現場における候補者本人による内容説明を必ず行なった上、 部会において審議、最終判断を行なう。その際、より充分な検討を行なうため、追加資料 を本人から提出してもらうこともある。こうした審査を経て、技術賞が決定され機構長に 推薦される。

審査基準は、これまで積み上げられてきた審査に対する基本的な考え方をふまえ、以下 の4項目を基本としている。

- (1) 技術への取り組みが創造的である
- (2) 技術の具体化への貢献、成果が顕著である
- (3) KEK の推進する研究計画への技術貢献が顕著である
- (4) 技術伝承への努力が積み重ねられている

KEK技術賞の募集は毎年11月までを公募期間とし、年度内に受賞者を決定・発表する。 受賞論文は、KEKインターナル・レポート(本冊子)として出版され、広く関係者等にも 配布されている。多くの皆さんが自分の磨き上げた技術をもって、KEK技術賞へチャレン ジしていただくようお願いしたい。

> 平成21年10月 出版担当 人事労務課