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4 Oxide Heterostructure Project 
– Observation and control of novel quantum phenomena in 
superstructures of strongly correlated oxides – 

Project Leader: Hiroshi KUMIGASHIRA 
 
4-1 Introduction 

The goal of this project is to design novel physical 
properties appearing at the heterointerface of strongly 
correlated oxides. The physical properties arise from 
strong mutual coupling among the spin, charge, and 
orbital degrees of freedom in the interface region 
between two different oxides [1]. In order to control 
such properties, it is necessary to clarify the interfacial 
electronic, magnetic, and orbital structures. We are 
therefore using synchrotron radiation spectroscopic 
techniques having elemental selectivity to probe these 
structures in the nm-scale at the oxide heterointerface. 
For example, the electronic structure at the interface is 
determined by photoemission spectroscopy (PES) and 
X-ray absorption spectroscopy (XAS), the magnetic 
structure by magnetic circular dichroism of XAS, and 
the orbital structure by linear dichroism of XAS. We aim 
to design and create novel quantum materials by 
optimally combining sophisticated oxide growth 
techniques using laser molecular beam epitaxy (MBE) 
and advanced analysis techniques using quantum 
beams. 

 
4-2 In-situ photoemission spectroscopy station for 
surfaces and interfaces of oxide superstructures 

We have constructed and developed an ‘‘in-situ 
photoelectron spectrometer – laser molecular beam 
epitaxy’’ system where a high-resolution 
angle-resolved photoemission apparatus (VG-Scienta 
SES2002 hemispherical electron analyzer) is 
connected to laser-MBE equipment in ultrahigh 
vacuum (UHV) [2]. The system is compactly designed 
and can therefore be installed at several different 
beamlines of the Photon Factory as an endstation. A 
schematic view of the system is illustrated in Fig. 1. 

This system consists of four interconnected 
chambers: sample entry, sample preparation, laser 
MBE, and photoemission chamber. The PES chamber 
is connected to a beamline. The four chambers are 
connected to each other in UHV and each chamber 
can be isolated by gate valves. A typical sequence of 
sample growth and measurement is as follows. First, a 
substrate mounted on a sample holder is loaded into 
the sample entry chamber and transferred to the laser 
MBE chamber through the sample preparation 
chamber. Oxide heterostructures are grown on the 
substrate by pulsed laser deposition while monitoring 
the intensity oscillation of reflection high-energy 

electron diffraction (RHEED). The fabricated oxide 
heterostructures are then transferred back to the 
sample preparation chamber where their surface 
structure and surface cleanness can be characterized 
by low-energy electron diffraction (LEED) and Auger 
electron spectroscopy (AES). After surface 
characterization, the sample is moved with a transfer 
rod into the photoemission measurement stage. The 
sample transfer is carefully operated under UHV of 
10-10 Torr in order to avoid contamination of the surface 
of the sample during the transfer. Such in-situ 
photoemission analysis is crucial for investigating the 
physical properties of oxide thin films and 
heterostructures, and few research groups have the 
capability to perform such experiments in a 
synchrotron facility [3]. Thus, our system is important 
for research in the field of strongly-correlated oxide 
heterostructures. 

 
4-3 Construction of new beamlines for surface and 
interface studies of oxide superstructures 

Previously, we had mainly used the in-situ PES – 
laser MBE system either at BL-28 for angle-resolved 
photoemission spectroscopy in the vacuum ultraviolet 
(VUV) region or at BL-2C for photoemission 
spectroscopy and X-ray absorption spectroscopy in the 
soft X-ray (SX) region. In order to enhance studies of 

Fig. 1: Schematic view of the developed “in-situ 
PES – laser MBE” system. This system will be 
installed at a new undulator beamline, BL-2A, 
which is designed for surface and interface studies 
of oxide heterostructures. 
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controlling the LNO layer thickness. Since the LAO 
substrate has a wide band gap of 5.6 eV, the electronic 
structure near the Fermi level (EF) of LNO films is not 
influenced by a signal from the substrate even for 
ultrathin films. In films thicker than 20 ML, the line 
shapes of these spectra are almost identical to each 
other. The valence-band spectra consist of two 
structures: two sharp structures derived from Ni eg and 
t2g states located at EF and 0.8 eV, respectively, and 
broad O-2p derived structures with a binding energy of 
2–7 eV [21]. It should be noted that such a sharp 
two-peak structure of Ni 3d states near EF has only 
been observed in a previous in-situ PES measurement 
on an LNO thick film having an atomically flat surface 
[21] and a bulk sensitive hard X-ray PES measurement 
on an LNO film grown on LAO substrates [22]. This 
attests to the high quality of the surfaces of the LNO 
ultrathin films measured in the present study. 

When the film thickness is decreased to below 10 ML, 
the valence-band spectra show remarkable and 
systematic changes mainly at Ni 3d states near EF. To 
investigate the changes in Ni 3d states in more detail, 
we present the near-EF spectra according to an 
enlarged binding energy scale in Fig. 5(b). For film 
thicknesses of 3–10 ML, the intensity of the 
Ni-3d-derived peak at EF gradually decreases, and 
simultaneously the t2g peak broadens. The leading 
edge of the Ni 3d states appears to shift from above EF 
to below EF at 3–6 ML, suggesting the evolution of a 
pseudogap at EF. As the film thickness is decreased 
further, the density of states (DOS) at EF becomes 
negligible, and finally a clear energy gap opens at 1–2 
ML. An extrapolation of the linear portion of the leading 
edge to the energy axis yields a valence-band maxima 
of 200 meV for a 1-ML film and almost 0 meV for a 
2-ML film. The negligibly small residual DOS at EF for 
the 2-ML film may be due to the finite energy resolution 
of our experimental system (120 meV). These results 
indicate the occurrence of MIT at a critical thickness of 
2–3 ML. 

It should be noted that the observed spectral 
behaviors are in line with the results of transport 
measurements [7-11,20]. Therefore, the present PES 
results demonstrate that LNO ultrathin films transform 
from metal to insulator through an intermediate state. 
The existence of the intermediate state, which is 
characterized by the gradual localization of conduction 
carriers from weak localization (Anderson localization 
behavior) to strong localization (VRH behavior) in films 
with thicknesses of 4–10 ML, is considered to be the 
key factor for understanding the origin of the peculiar 
insulating state in LNO ultrathin films [9,11]. Since 
these intermediate states seem to have a close 
relationship with the formation of a pseudogap 

observed in the present PES measurements, a more 
detailed analysis of the pseudogap is required to 
understand the origin of the MIT. 

To clarify the formation of the energy gap and 
pseudogap, we symmetrized the near-EF spectra with 
respect to EF to remove the effects of the Fermi-Dirac 
function on the spectra [16]. The resultant symmetrized 
spectra are shown in Fig. 5(c). As expected from the 
raw data in Fig. 5(b), the change in the spectra is 
mainly caused by the suppression of the quasiparticle 
peak at EF and subsequent formation of a pseudogap 
and a gap. In films thicker than 20 ML, a sharp 
quasiparticle peak is located just at EF and remains 
almost unchanged irrespective of film thickness. In 
contrast, below 10 ML the intensity of quasiparticle 
peaks monotonically decreases with film thickness. As 
a result of the suppression of spectral intensity at EF, a 
pseudogap structure is apparently formed at EF below 
4 ML. Finally, the DOS at EF disappears at a film 
thickness of 1–2 ML, leading to the formation of an 
energy gap. These results clearly illustrate that the 
evolution of the pseudogap and the resultant formation 
of the energy gap at EF are responsible for the MIT in 
LNO ultrathin films through the intermediate localized 
states. 

Next, we address a fundamental question as to 
whether the observed thickness-dependent MIT is 
accompanied by charge disproportionation as 
observed in other RNiO3 family members. Charge 
disproportionation concomitant with resultant structural 
change has been commonly observed for all the 
members of RNiO3, except LNO, across the 
temperature-driven MIT [18,19]. Since the charge 
disproportionation in bulk RNiO3 modulates the local 

Fig. 5: (a) In-situ valence-band spectra of LNO 
ultrathin films grown on LAO substrates by digitally 
controlling the film thickness. (b) PES spectra near 
EF. (c) Symmetrized spectra near EF. 
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