

March 13, 2013 Epocal Tsukuba

幾何学的電子相関がもたらす異常金属相の解明 一金属絶縁体転移の周辺一

Ryosuke Kadono IMSS-KEK/CMRC/Sokendai

Introduction

Issue: Geometrical Correlation of Itinerant Electrons

Stage of itinerancy = highly symmetric crystal

Pyrochlore lattice (Spinel) Pyrochlore oxides: $A_2B_2O_7$

Spinels: AB_2O_4

Problem

Structural phase transition that accompanies metal-insulator (MI) transition.

Solution

Mixed valence state may suppress MI transition by charge frustration(?).

e.g., LiV_2O_4

Issues

Is there any sign of geometrical frustration in the insulator phase associated with MI transition?

Insulator phase of Culr₂S₄ revisited

Kenji M. Kojima^{A,B}, Masanori Miyazaki^A, Masatoshi Hiraishi^A, Ichihiro Yamauchi^A, Akihiro Koda^{A,B}, Ryosuke Kadono^{A,B}, Yoshinori Tsuchiya^C, Hiroyuki S. Suzuki^C, Hideaki Kitazawa^C ^AKEK/J-PARC, ^BSOKENDAI,^CNIMS

Metal-insulator transition in Culr₂S₄

Structural phase transition accompanied by MI transition at ~230 K:

Metal-insulator transition in Culr₂S₄

Formation of isomorphic Ir³⁺ and Ir⁴⁺ octamers and spin dimerization:

a) Red=Ir³⁺, Blue=Ir⁴⁺, with spin dimers shown by light blue lines.

b) Same as a), showing Ir skeleton of octamers.

...suggesting the effect of charge/spin frustration

cf. Fe_3O_4 (magnetite: Fe^{2+} & Fe^{3+})

a) Electron diffraction pattern of CuIr_2O_4 at 93 K with incident beam parallel to the [110] cubic axis. b) SR X-ray diffraction pattern with Rietveld fit.

Metal-insulator transition in Culr₂S₄

Theoretical model on t_{2g} manifold: Dimerization of Ir⁴⁺ on intersecting Ir chains:

Khomskii and Mizokawa, PRL 94, 156402 (2005)

...but no reason to take octamer arrangement.

μ SR in Culr₂S₄

μ SR in Cu_{1-x}Zn_xIr₂S₄

Physics of Ir⁴⁺ (5d⁵) ions:

Physics of Ir⁴⁺ (5d⁵) ions:

Effective Hamiltonian: (a) (b) $H^{(\gamma)}_{ij} = -JS^{\gamma}_{i}S^{\gamma}_{j}, \quad \gamma = x, y, z$ S^y2S^y3 Compass model on triangle/honeycomb $S_1^{x}S_2^{x}$ = Kitaev model Ir⁴⁺ octamer can be mapped 3+onto the Kitaev model! $S^{x}_{i}S^{x}_{j}$ 4 + $S_i^{v} S_i^{v}$ 4 +• While single (isolated) $S_i^z S_j^z$ octamer would not exhibit local magnetism*, weak 4 +inter-octamer correlation $\bullet\mu^+$ might lead to freezing of 4 +spin-liquid. 4 +*Y. Motome, private commu-4 +nication. X

Quest for the origin of MI transition in Cd₂Os₂O₇

Akihiro Koda^{A,B}, Kenji M. Kojima^{A,B}, Masanori Miyazaki^A, Masatoshi Hiraishi^A, Ichihiro Yamauchi^A, Ryosuke Kadono^{A,B}, Jun-ichi Yamaura^C, Zenji Hiroi^C ^AKEK/J-PARC, ^BSOKENDAI,^CISSP-U.Tokyo

Bulk magnetic property:

Single Crystals (m = 18mg)

250

300

350

Polycrystal (m = 49 mg)

200

150

Temperature (K)

150

100

50

0

0

50

100

2nd order transition

Gap opening due to SDW order ? (Slater transition)

Structural property:

Optical conductivity on a small single crystal

Neutron diffraction ¹¹⁴Cd₂Os₂O₇

Weak lattice anomaly No symmetry change No magnetic Bragg peak

J. Reading and M. T. Weller, J. Mater. Chem. **11** (2001) 2373. W. J. Padilla, D. Mandrus, D. N. Basov, PRB **66** (2002) 035120.

BSC-like gap: $2\Delta/kT_c \sim 5.2$

All IR active phonons preserved. No new mode below $T_{\rm MI}$

Not CDW No change of crystal symmetry

0.20 Cd₂Os₂O₇ ZF/LF-µSR F = 100 mT T = 1.9 K Corrected Asymmetry 0.15 Frequency (MHz) 0 mT 0.10 0.05 0.00 0.0 0.2 0.4 0.61 3 8 Time (µs) 20 emu/Os mol) Cd₂Os₂O₇ Relaxation Rate (μs⁻¹) FC ZF-µSR (10⁻⁴ 10 H = 1TH/H 100 200 300 0 Temperature (K) T_M C 200 300 100 Temperature (K)

 μ SR on powder sample:

A. Koda et al., JPSJ 76 (2007) 063703.

- Static magnetic order appears not at
- $T_{\rm MI} = 230$ K but at T = 150 K.
- Distribution of internal field \rightarrow SDW?

Spin fluctuations observed between $T_{\rm MI}$ and 150 K.

However, no anomaly at 150 K detected by other experiments.

Res. X-ray Scattering on single crystal: J. Yamaura et al. : PRL, 108, 247205 (2012).

μ SR on single crystal:

A. Koda et al.

- Strong spin fluctuation below $T_{\rm MI}$ =226 K was confirmed.
- Truly static order establishes below ~150 K. (Not SDW, but comm. AF)

*µ*SR on single crystal: Issue: Spin fluctuation rate

A. Koda et al.

 μ SR on single crystal: Issue: Muon site and δ

A. Koda *et al*.

T < 150 K: Muon site may be slightly off-center in the Os tetrahedron cage so that H_{int} does not cancel out.

$$H_{\text{int}} = \sum_{i} \hat{A}_{i} \vec{\mu}_{i}$$

i.e. H_{int} is a vector sum.
$$H_{\text{int}} = 0$$
$$\hat{A}_{i}^{\alpha\beta} = \frac{1}{r_{i}^{3}} \left(\delta_{\alpha\beta} - \frac{3r_{i}^{\alpha}r_{i}^{\beta}}{r_{i}^{2}} \right)$$
$$\dots \mu^{+} \text{ is attracted by negative charge of oxygen?}$$

T > 150 K: Hyperfine interaction:

$$2\delta^2 \propto \sum_{i,\alpha,\beta} \left(A_i^{\alpha\beta}\right)^2 (\alpha = x, y; \beta = x, y, z)$$

i.e. δ is a rms value of dipole tensor.

 $A_{\mu}/\gamma_{\mu} = 0.21 \text{ T}/\mu_{\text{B}}$ (Calculated for 4 nn Os ions)

 $\delta = 27.8(9) \text{ MHz} \text{ (experiment)} \longrightarrow |\mu'_i| = \delta/\gamma_\mu A_\mu \doteq 0.15(1)\mu_B$

...having no direct relationship with H_{int} .

NMR on single crystal:

$\Psi_1(\Gamma_3)$ all-in/all-out spin structure

I. Yamauchi et al.

Estimated ordered moment is 1.0~1.5 $\mu_{\rm B}/{\rm Os}$ (from HF parameter for $T > T_{\rm MI}$)

 μ SR vs NMR:

A. Koda et al.

Muon probes fluctuation of the Os moments perpendicular to [111] axis?

Os moment parallel to [111] : $1-1.5\mu_{\rm B}$

Os moment perpendicular to [111] : $0.15\mu_{\rm B}$

Origin: anisotropic exchange interaction under relatively large spin-orbit interaction for 5d electrons? $Cd_2Os_2O_7 (5d^3)$

 $\begin{array}{c} e_{g} \\ CEF \\ \lambda \sim 0.5 \text{ eV} \\ t_{2g} \\ 10 Dq \sim 4 \text{ eV} \\ 10 Dq \sim 4 \text{ eV} \\ Tetragonal splitting } \Delta \sim 0.29 \text{ eV} \end{array}$ (H. Shinaoka)

Summary

• The ground state property of 5d electron compounds is subject to strong influence of spin-orbit interaction whose energy scale is comparable with that of the Hund coupling and/or tetragonal CF.

• In an iridium spinel Culr_2S_4 , it is likely that Ir^{4+} ions are in $J_{\text{eff}}=1/2$ state and are mapped onto the Kitaev model due to strong anisotropy of exchange interaction, where the observed random magnetism may be interpreted as a frozen spin liquid state due to inter-octamer interaction.

• In an osmium pyrochlore $Cd_2Os_2O_7$, anomalous enhancement of spin fluctuation is observed over a wide temperature range below MI transition. While theoretical study based on LSDA+U suggests Mott transition as possible origin of MI transition, the strong residual fluctuation suggests important role of geometrical frustration.