

Crystalline Symmetry and Topology

YITP, Kyoto University Masatoshi Sato

In collaboration with

- Ken Shiozaki (YITP)
- Kiyonori Gomi (Shinshu University)
- Nobuyuki Okuma (YITP)

- Ai Yamakage (Nagoya University)
- Shingo Kobayashi (Nagoya University)
- Yukio Tanaka (Nagoya University)

A review paper on topological SCs with Yoichi Ando

MS, Ando, Rep. Prog. Phys. 80, 076501 (17)

Outline

- 1. Topological (crystalline) insulators/superconductors
- 2. K-group classification
- 3. Band-theory and Atiyah-Hirzebruch spectral sequence

Introduction

The idea of topological insulator/superconductor (TI/TSC) has been successfully established with many experimental supports for surface states

TI/TSC = Non-trivial topological # of occupied state

Ordinary insulator/SC

 $N_{\rm top} \neq 0$

 $N_{\rm top} = 0$

The non-trivial topological structure predicts the existence of gapless surface states

TIs/TSCs have gapless boundary states ensured by bulk topological numbers

bulk-boundary correspondence 5

Symmetry is very important to obtain top. phases

Time-reversal symmetry (TRS)

Particle-hole symmetry (PHS)

Kramers pair

- No back scattering
- topologically stable

Majorana fermion

But this is just a starting point ...

Topological Crystalline Insulator [L. Fu (11), Hsieh et al (12)]

Recently, it has been recognized that point group symmetry also provides novel topological surface states

Idea

Using the eigen value of mirror operator, ky=0 plane can be separated into two QH states.

Questions

- Is it possible to classify such topological phases systematically?
- How many new topological phases can we obtain in the presence of additional symmetry?

To answer these questions, we employ the K-theory.

Shiozaki-MS, Phys. Rev. B90, 166114 (2014).
Shiozaki-MS-Gomi, Phys. Rev. B91, 155120 (2015).
Shiozaki-MS-Gomi, Phys. Rev. B93, 195413 (2016).
Shiozaki-MS-Gomi, Phys. Rev. B95, 235425 (2017). (Editor's suggestion)

K-theory classification of topological crystalline materials

Our setting

In stead of occupied states, we classify flattened Hamiltonians

The flattened Hamiltonian defines a map from momentum space to Hilbert space

If the map defines a non-trivial homotopy, we may have a nontrivial topological phase Adding topologically trivial bands makes the classification simpler

[Kitaev(09)]

In addition to simple deformation of Hamiltonians, the Ktheory approach allows us to add topologically trivial bands during the deformation of Hamiltonians

stable equivalence $\mathcal{H}_1 \sim \mathcal{H}_2$

deformable by adding extra trivial bands

The stable-equivalence classes defines topological phases

Importantly, using stable equivalence, we can avoid annoying interference between topological charges

Classification of TCIs and TCSCs: K-theory approach

In general, topological phases can be understood as the existence of topological objects in the momentum space

2 dim top. phase

2dim BZ = 2dim torus

16

"monopole"

 $n \in \text{occ}$

Chern number

$$Ch_1 = \int_{2dBZ} \left(rac{dm{S}}{2\pi}
ight) \cdot \left[m{
abla} imes m{A}(m{k})
ight]$$

 $\mathcal{A}(m{k}) = i \sum \langle u_n(m{k}) | m{
abla} u_n(m{k})
angle$

In the framework of K-theory, one can increase the dimension of the system systematically Teo-Kane (10)

$$H_{d+1}(\boldsymbol{k}, k_{d+1}) = \begin{cases} H_d(\boldsymbol{k}) \cos k_{d+1} + \Gamma \sin k_{d+1} & \text{chiral case} \\ (H_d(\boldsymbol{k}) \otimes \sigma_z) \cos k_{d+1} + (1 \otimes \sigma_y) \sin k_{d+1} & \text{non-chiral case} \end{cases}$$

This map keeps the topological number but it shifts the symmetry of the system

class DIII (TRI SCs)									
$CH_d(\mathbf{k})C^{-1} = -H$	$H_d(-oldsymbol{k})$	C	$= \tau_x F$	K ($C^{2} = 1$				
$TH_d(\boldsymbol{k})T^{-1} = H_d$									
$H_{d+1}(\boldsymbol{k}, k_{d+1}) = H_d(\boldsymbol{k}) \cos k_{d+1} + \Gamma \sin k_{d+1} \Gamma = iTC$									
class All (TRI Insulators) This term									
$TH_{d+1}(\boldsymbol{k}, k_{d+1})T^{-}$	$-1 = H_d$	$_{+1}(-oldsymbol{k},-$	$-k_{d+1})$			br	eaks P	HS	
		TRS	PHS	CS	d=1	d=2	d=3		
	AI	1	0	0	0	0	0		
	BDI	1	1	1	Z	0	0		
	D	0	1	0	Z ₂	Z	0		
nierarchy of top #	DIII	-1	1	1	Ζ,	Z ₂	Z		
· ·	All	-1	0	0	0	Ζ,	Z ₂		
	CII	-1	-1	1	2Z	0	Z ₂		
	С	0	-1	0	0	2Z	0		
	CI	1	-1	1	0	0	2Z	18	

We generalize this idea to systems with additional symmetry Shiozaki-MS(14)

class DIII (TRI SCs) + mirror reflection

$$\begin{array}{ll} CH_{d}({\bm k})C^{-1} = -H_{d}(-{\bm k}) & C = \tau_{x}K & C^{2} = 1 \\ TH_{d}({\bm k})T^{-1} = H_{d}(-{\bm k}) & T = is_{y}K & T^{2} = -1 \\ UH_{d}({\bm k})U^{-1} = H_{d}(-k_{1},k_{2},\ldots,k_{d}) & U = is_{x} \end{array}$$

$$H_{d+1}(\boldsymbol{k}, k_{d+1}) = H_d(\boldsymbol{k}) \cos k_{d+1} + \Gamma \sin k_{d+1} \quad \Gamma = iTC$$

This term keeps mirror sym.

class AII (TRI Insulators) + mirror reflection

$$TH_{d+1}(\mathbf{k}, k_{d+1})T^{-1} = H_{d+1}(-\mathbf{k}, -k_{d+1})$$
$$UH_{d+1}(\mathbf{k})U^{-1} = H_{d+1}(-k_1, k_2, \dots, k_d, k_{d+1})$$
mirror sym.

However, this is not the only possibility

The mapped Hamiltonian also has a different additional symmetry

In this manner, we can change the number of flipped coordinates *d*₁₁ under the symmetry, with keeping the topological structure

Using these relations, we have completed the classification of TCIs and TCSCs protected by order-two space (and magnetic space) groups

Extended topological Table

A single periodic table with 10 different topological class

[Schnyder et al (08)]

[Shiozaki-MS (14), Shiozaki-MS-Gomi (15)] 6 periodic tables with 27 classes **222 class** +6 periodic tables with 10 classes

		Symmetry	Class	\mathcal{C}_q or \mathcal{R}_q	$\delta = 0$	$\delta = 1$	$\delta = 2$	$\delta = 3$	$\delta = 4$	$\delta = 5$	$\delta = 6$	$\delta = 7$
Sr ₂ RuO ₄		U	Α	\mathcal{C}_1	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}
	Langely (1914)	U_+	AIII	\mathcal{C}_0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0
11.11	0.12 - probability	U_{-}	AIII	$\mathcal{C}_1 imes \mathcal{C}_1$	0	$\mathbb{Z}\oplus\mathbb{Z}$	0	$\mathbb{Z}\oplus\mathbb{Z}$	0	$\mathbb{Z}\oplus\mathbb{Z}$	0	$\mathbb{Z}\oplus\mathbb{Z}$
	0.08 -		AI	\mathcal{R}_1	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2
Sr Sr	0.04 -		BDI	\mathcal{R}_2	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0
	0 ₃₀ 30		D	\mathcal{R}_3	_0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$
Ru	x ¹⁵ 15 y	$U_{+}^{+}, U_{-}^{-}, U_{++}^{+}, U_{}^{-}$	DIII	\mathcal{R}_4	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0
0			AII	\mathcal{R}_5	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0
			CII	\mathcal{R}_6	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0
			\mathbf{C}	\mathcal{R}_7	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}
			CI	\mathcal{R}_0	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2
		U_{+-}^+, U_{-+}^-	BDI	$\mathcal{R}_1 \times \mathcal{R}_1$	$\mathbb{Z}_2 \oplus \mathbb{Z}_2$	$\mathbb{Z}\oplus\mathbb{Z}$	0	0	0	$2\mathbb{Z}\oplus 2\mathbb{Z}$	0	$\mathbb{Z}_2 \oplus \mathbb{Z}_2$
		U^+_{-+}, U^{+-}	DIII	$\mathcal{R}_3\times\mathcal{R}_3$	0	$\mathbb{Z}_2 \oplus \mathbb{Z}_2$	$\mathbb{Z}_2 \oplus \mathbb{Z}_2$	$\mathbb{Z}\oplus\mathbb{Z}$	0	0	0	$2\mathbb{Z}\oplus 2\mathbb{Z}$
		U^+_{+-}, U^{-+}	CII	$\mathcal{R}_5 imes \mathcal{R}_5$	0	$2\mathbb{Z} \oplus 2\mathbb{Z}$	0	$\mathbb{Z}_2 \oplus \mathbb{Z}_2$	$\mathbb{Z}_2 \oplus \mathbb{Z}_2$	$\mathbb{Z}\oplus\mathbb{Z}$	0	0
C T		U^+_{-+}, U^{+-}	CI	$\mathcal{R}_7\times \mathcal{R}_7$	0	0	0	$2\mathbb{Z}\oplus 2\mathbb{Z}$	0	$\mathbb{Z}_2 \oplus \mathbb{Z}_2$	$\mathbb{Z}_2 \oplus \mathbb{Z}_2$	$\mathbb{Z}\oplus\mathbb{Z}$
Shle			AI	\mathcal{R}_7	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}
			BDI	\mathcal{R}_0	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2
0.00			D	\mathcal{R}_1	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2
S		$U_{-}^{+}, U_{+}^{-}, U_{}^{+}, U_{++}^{-}$	DIII	\mathcal{R}_2	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}		0	0	$2\mathbb{Z}$	0
THIT			AII	\mathcal{R}_3	0	\mathbb{Z}_2	2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$
	$\frac{1}{2}$ $hv = 21.2 \text{ eV}$		CII	\mathcal{R}_4	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0
	(Hel)		\mathbf{C}	\mathcal{R}_5	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0
	$\overline{\mathbb{R}}$ $\overline{\Gamma}$ \uparrow \overline{X} \uparrow Λ_2		CI	\mathcal{R}_6	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0
	\leq $\overline{\Lambda}$	U^+_{-+}, U^{+-}	BDI, CII	\mathcal{C}_1	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}
		U_{+-}^+, U_{-+}^-	DIII, CI	C_1	0	Z	0	Z	0	Z	0	Z
	Mayovoctor											

vvave vector

We could take into account order-two space group syms, but they are a merely part of space group syms

How to include general space group syms in band topology?

 Our answer is to use Atiyah-Hirzebruch Spectral Sequence (AHSS)

Shiozaki-MS-Gomi, arXiv:1802.06694

Band Theory

- Energy spectra of electrons in crystals are given in Brillouin zone.
- Each band at the momentum k belongs to an irreducible rep. of crystalline symmetry keeping k (= little group G_k)

crystal sym.
$$U_g H(\mathbf{k}) U_g^{-1} = H(g\mathbf{k})$$

For $g \in G_{\mathbf{k}}$ (i.e. for $g\mathbf{k} = \mathbf{k}$) \longrightarrow $[H(\mathbf{k}), U_g] = 0$
TIBr O_h^{-1} (221)
 $v_g^{-1} = 0$
 $v_g^{-1} = 0$

These representations in band structures give useful information of topology

Atiyah-Hirzebruch spectral sequence (AHSS) introduces such band representations naturally in the framework of K-theory.

What is AHSS ?

AHSS is a mathematical tool to approximate K-group on the whole BZ by cell-decomposition

If these top#s on p-cells are consistently extended to the whole BZ, then they should be top#s of K-group on BZ

Extension of top# on p-cells to higher-cells can be done iteratively

Relation to the band theory

For the cell decomposition respecting the crystal symmetry, top#s on p-cells are given by # of irreps of occupied bands under the little group

Generally, in terms of K-theory, top # on p-cell D^p can be written as

$$E_1^{p,-n} \sim \prod_{D^p; p-cell} K_{G_k}^{-n}(k) \quad (k \in D^p)$$
of irreps of occupied band under the little group G_k

29

Interestingly, using the dimensional shift and bulk-boundary correspondence, we have several different meanings of E1 page

First, by increasing the dimension, one can interpret E1-page as topological insulators

 S^p

$$E_{1}^{p,-n} \sim \prod_{D^{p}; p-cell} K_{G_{k}}^{-n}(\boldsymbol{k}) \quad (\boldsymbol{k} \in D^{p}) \quad \begin{array}{c} \text{Class n} \\ \text{0-dim top \# on p-cells} \end{array}$$

$$\prod \tilde{K}_{G_{k}}^{-(n-p)}(S^{p}) \quad (S^{p} = D^{p}/\partial D^{p}) \quad \begin{array}{c} \text{Class n} \\ \text{0-dim top \# on p-cells} \end{array}$$

Class (n-p) p-dim top. insulator

Furthermore, combining the dimensional shift and bulk-boundary correspondence, we can also interpret E1-page as gapless states

How to check the extension

To check the extension, we consider a map d_1 between top # on p-cells and top # on adjacent (p+1)-cells $d_1: E_1^{p,-n} \to E_1^{p+1,-n}$

Such a map can be obtained naturally if we interpret E1-pages as irreps on p-cells and those on (p+1)-cells

The compatibility relation defines d₁

The extension from p- to (p+1)-cells can be checked by d_1 with different interpretation of E1-pages

top. insulator on p-cell

without gapless state on (p+1)-cell

In this manner, we can check the extension to higher cells and eventually obtain top#s on whole BZ

Using AHSS, we have obtained the complete list of top#s for all 230 space groups (without TRS, PHS) [Shiozaki-MS-Gomi (18)]

\mathbf{SG}	Short		$E_{2}^{0,0}$	$E_2^{1,0}$	$E_2^{2,0}$	$E_2^{3,0}$	\mathbf{SG}	Short	$\epsilon(m_{100}, m_{010})$	$E_{2}^{0,0}$	$E_{2}^{1,0}$	$E_2^{2,0}$	$E_{2}^{3,0}$
1	P1		$\mathbb{Z}_{\mathbb{Z}}$	\mathbb{Z}^3	\mathbb{Z}^3	\mathbb{Z}	25	Pmm2	$+_{0}$	\mathbb{Z}^9	\mathbb{Z}^9	0	0
2	$P\bar{1}$		\mathbb{Z}^9	0	\mathbb{Z}^3	\mathbb{Z}_2			-1/2	\mathbb{Z}	\mathbb{Z}^5	\mathbb{Z}^4	0
3	P2		\mathbb{Z}^5	\mathbb{Z}^{5}	\mathbb{Z}	\mathbb{Z}	26	$Pmc2_1$	+0	\mathbb{Z}^3	$\mathbb{Z}^{3} + \mathbb{Z}_{2}^{3}$	0	0
4	$P2_1$		\mathbb{Z}	$\mathbb{Z} + \mathbb{Z}_2^3$	\mathbb{Z}	\mathbb{Z}			-1/2	\mathbb{Z}	\mathbb{Z}^3	$\mathbb{Z}^2 + \mathbb{Z}_2$	0
5	C2		\mathbb{Z}^3	\mathbb{Z}^3	\mathbb{Z}	\mathbb{Z}	27	Pcc2	+0	\mathbb{Z}^5	\mathbb{Z}^5	0	0
6	Pm		\mathbb{Z}^3	\mathbb{Z}^{6}	\mathbb{Z}^3	0			-1/2	\mathbb{Z}	\mathbb{Z}	\mathbb{Z}_2^4	0
7	Pc		\mathbb{Z}	$\mathbb{Z}^2 + \mathbb{Z}_2$	$\mathbb{Z} + \mathbb{Z}_2$	0	28	Pma2	+0, -1/2	\mathbb{Z}^4	\mathbb{Z}^5	\mathbb{Z}	0
8	Cm		\mathbb{Z}^2	\mathbb{Z}^4	\mathbb{Z}^2	0	29	$Pca2_1$	+0, -1/2	\mathbb{Z}	$\mathbb{Z} + \mathbb{Z}_2^2$	\mathbb{Z}_2	0
9	Cc		\mathbb{Z}	\mathbb{Z}^2	$\mathbb{Z} + \mathbb{Z}_2$	0	30	$Pna2_1$	+0, -1/2	\mathbb{Z}^3	\mathbb{Z}^3	\mathbb{Z}_2	0
							31	$Pmn2_1$	+0, -1/2	\mathbb{Z}^2	$\mathbb{Z}^3 + \mathbb{Z}_2$	\mathbb{Z}	0
\mathbf{SG}	Short	$\epsilon(2_{001}, m_{001})$	$E_{2}^{0,0}$	$E_{2}^{1,0}$	$E_{2}^{2,0}$	$E_{2}^{3,0}$	32	Pba2	+0, -1/2	\mathbb{Z}^3	$\mathbb{Z}^3 + \mathbb{Z}_2$	\mathbb{Z}_2	0
10	P2/m	+0.1/2	\mathbb{Z}^{15}	0	\mathbb{Z}^3	0	33	$Pna2_1$	+0, -1/2	\mathbb{Z}	$\mathbb{Z} + \mathbb{Z}_4$	\mathbb{Z}_2	0
	,	_	\mathbb{Z}	\mathbb{Z}^8	\mathbb{Z}	0	34	Pnn2	+0, -1/2	\mathbb{Z}^3	\mathbb{Z}^3	\mathbb{Z}_2	0
11	$P2_1/m$	+0.1/2, -	\mathbb{Z}^{6}	\mathbb{Z}^2	\mathbb{Z}^2	0	35	Cmm2	+0	\mathbb{Z}^6	\mathbb{Z}^6	0	0
12	C2/m	$\pm 0.1/2$	\mathbb{Z}^{10}	0	\mathbb{Z}^2	0			-1/2	\mathbb{Z}^2	\mathbb{Z}^4	\mathbb{Z}^2	0
	,	_	\mathbb{Z}^3	\mathbb{Z}^4	\mathbb{Z}	0	36	$Cmc2_1$	+0	\mathbb{Z}^2	$\mathbb{Z}^2 + \mathbb{Z}_2^2$	0	0
13	P2/c	+0.1/2, -	\mathbb{Z}^7	\mathbb{Z}^2	\mathbb{Z}	0			-1/2	\mathbb{Z}	$\mathbb{Z}^2 + \mathbb{Z}_2$	\mathbb{Z}	0
14	$P2_1/c$	$\pm 0.1/2, -$	\mathbb{Z}^5	\mathbb{Z}_2	\mathbb{Z}	0	37	Ccc2	$+0^{-1}$	\mathbb{Z}^4	\mathbb{Z}^4	0	0
15	C2/c	$\pm 0.1/2, -$	\mathbb{Z}^{6}	\mathbb{Z}	\mathbb{Z}	0			-1/2	\mathbb{Z}^2	\mathbb{Z}^2	\mathbb{Z}_2^2	0
	,	0,1/2/					38	Amm2	+0	\mathbb{Z}^{6}	\mathbb{Z}^6	0	0
\mathbf{SG}	Short	$\epsilon(2_{100}, 2_{010})$	$E_{2}^{0,0}$	$E_{2}^{1,0}$	$E_{2}^{2,0}$	$E_{2}^{3,0}$			-1/2	\mathbb{Z}_{i}	\mathbb{Z}^4	\mathbb{Z}^3	0
16	P222	+0	\mathbb{Z}^{13}	\mathbb{Z}_2	0	Z	39	Abm2	$+_{0}$	\mathbb{Z}^4	$\mathbb{Z}^4 + \mathbb{Z}_2$	0	0
		-1/2	\mathbb{Z}	\mathbb{Z}^{12}	0	\mathbb{Z}			-1/2	\mathbb{Z}	\mathbb{Z}^2	$\mathbb{Z} + \mathbb{Z}_2^2$	0
17	$P222_{1}$	$+_0,{1/2}$	\mathbb{Z}^5	$\mathbb{Z}^4 + \mathbb{Z}_2$	0	\mathbb{Z}	40	Ama2	$+_0,{1/2}$	\mathbb{Z}^3	\mathbb{Z}^4	\mathbb{Z}	0
18	$P2_{1}2_{1}2$	$+_0,{1/2}$	\mathbb{Z}^3	$\mathbb{Z}^{2} + \mathbb{Z}_{2}^{3}$	0	\mathbb{Z}	41	Aba2	+0, -1/2	\mathbb{Z}^2	$\mathbb{Z}^2_+ \mathbb{Z}_2$	\mathbb{Z}_2	0
19	$P2_{1}2_{1}2_{1}$	$+_0,{1/2}$	\mathbb{Z}	\mathbb{Z}_4^3	0	\mathbb{Z}	42	Fmm2	$+_{0}$	\mathbb{Z}^{5}	\mathbb{Z}^{5}	0	0
20	$C222_{1}$	$+_0,{1/2}$	\mathbb{Z}^3	$\mathbb{Z}^2 + \mathbb{Z}_2^2$	0	\mathbb{Z}			-1/2	\mathbb{Z}	\mathbb{Z}^3	$\mathbb{Z}^2 + \mathbb{Z}_2$	0
21	C222	+0 '	\mathbb{Z}^8	$\mathbb{Z} + \mathbb{Z}_2$	0	\mathbb{Z}	43	Fdd2	+0, -1/2	\mathbb{Z}^2	\mathbb{Z}^2	\mathbb{Z}_2	0
		-1/2	\mathbb{Z}^2	\mathbb{Z}^7	0	\mathbb{Z}	44	Imm2	+0	\mathbb{Z}^{5}	\mathbb{Z}^{5}	0	0
22	F222	+0	\mathbb{Z}^7	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}			-1/2	\mathbb{Z}	$\mathbb{Z}^3 + \mathbb{Z}_2$	\mathbb{Z}^2	0
		-1/2	\mathbb{Z}	\mathbb{Z}^{6}	\mathbb{Z}_2	\mathbb{Z}	45	Iba2	+0	\mathbb{Z}^3	$\mathbb{Z}^3 + \mathbb{Z}_2$	0	0
23	I222	$+0^{-1}$	\mathbb{Z}^7	\mathbb{Z}_2^2	0	\mathbb{Z}			${1/2}$	\mathbb{Z}	$\mathbb{Z} + \mathbb{Z}_2$	\mathbb{Z}_2^2	0
		-1/2	\mathbb{Z}	$\mathbb{Z}^{\overline{6}} + \mathbb{Z}_2$	0	\mathbb{Z}	46	Ima2	+0	\mathbb{Z}^3	$\mathbb{Z}^3 + \mathbb{Z}_2$	0	0
24	$I2_{1}2_{1}2_{1}$	$+_0,{1/2}$	\mathbb{Z}^4	$\mathbb{Z}^3 + \mathbb{Z}_2$	0	\mathbb{Z}			-1/2	\mathbb{Z}^2	\mathbb{Z}^3	\mathbb{Z}	0

(Cont.)

\mathbf{SG}	Short	$(\epsilon(m_{100}, m_{010}), \epsilon(m_{100}, m_{001}), \epsilon(m_{010}, m_{001}))$	$E_{2}^{0,0}$	$E_{2}^{1,0}$	$E_{2}^{2,0}$	$E_{2}^{3,0}$
47	Pmmm	$(+, +, +)_0$	\mathbb{Z}^{27}	0	0	0
		$(-, -, -)_{1/2}$	\mathbb{Z}^9	0	\mathbb{Z}^6	0
		(-, +, +), (+, -, +), (+, +, -)	\mathbb{Z}^3	\mathbb{Z}^{12}	0	0
		(+, -, -), (-, +, -), (-, -, +)	\mathbb{Z}^5	\mathbb{Z}^4	\mathbb{Z}^2	0
48	Pnnn	$(+, +, +)_0, (+, -, -), (-, +, -), (-, -, +)$	\mathbb{Z}^9	0	\mathbb{Z}_2	0
		$(-, -, -)_{1/2}, (-, +, +), (+, -, +), (+, +, -)$	\mathbb{Z}^3	\mathbb{Z}^{6}	0	0
49	Pccm	$(+, +, +)_0, (+, -, -)$	\mathbb{Z}^{14}	0	\mathbb{Z}	0
		$(-, -, -)_{1/2}, (-, +, +)$	\mathbb{Z}^{6}	\mathbb{Z}^4	\mathbb{Z}	0
		(+, -, +), (+, +, -)	\mathbb{Z}	\mathbb{Z}^{10}	0	0
		(-, +, -), (-, -, +)	\mathbb{Z}^5	\mathbb{Z}^2	\mathbb{Z}_2	0
50	Pban	$(+, +, +)_0, (+, -, -), (-, +, -), (-, -, +)$	\mathbb{Z}^9	0	\mathbb{Z}_2	0
		$(-, -, -)_{1/2}, (-, +, +), (+, -, +), (+, +, -)$	\mathbb{Z}^3	\mathbb{Z}^{6}	0	0
51	Pmma	$(+, +, +)_0, (+, -, +)$	\mathbb{Z}^{12}	\mathbb{Z}^3	0	0
		$(-, -, -)_{1/2}, (-, +, -)$	\mathbb{Z}^7	\mathbb{Z}	\mathbb{Z}^3	0
		(+, +, -), (+, -, -)	\mathbb{Z}^4	\mathbb{Z}^7	0	0
		(-, +, +), (-, -, +)	\mathbb{Z}	$\mathbb{Z}^5 + \mathbb{Z}_2$	\mathbb{Z}	0
52	Pnna	all	\mathbb{Z}^5	\mathbb{Z}^2	0	0
53	Pmna	$(+, +, +)_0, (-, -, -)_{1/2}, (+, +, -), (-, -, +)$	\mathbb{Z}^9	\mathbb{Z}	\mathbb{Z}	0
		(+, -, +), (-, +, +), (+, -, -), (-, +, -)	\mathbb{Z}^2	\mathbb{Z}^5	0	0

(Cont.)

\mathbf{SG}	Short	$(\epsilon(m_{100}, m_{010}), \epsilon(m_{100}, m_{001}), \epsilon(m_{010}, m_{001}))$	$E_{2}^{0,0}$	$E_{2}^{1,0}$	$E_{2}^{2,0}$	$E_{2}^{3,0}$	_
54	Pcca	$(+, +, +)_0, (+, +, -), (+, -, +), (+, -, -)$	\mathbb{Z}^6	\mathbb{Z}^3	0	0	
	DI	$(-, -, -)_{1/2}, (-, +, +), (-, +, -), (-, -, +)$	\mathbb{Z}^4	Z 773	\mathbb{Z}_2	0	
55	Pbam	$(+, +, +)_0, (-, +, +)$	Ш ^о 7117	\mathbb{Z}_2°	0	0	
		$(-, -, -)_{1/2}, (+, -, -)$ (+, -, +), (+, +, -), (-, -, +)	71.	$\mathbb{Z}^4 \perp \mathbb{Z}_2$	$\mu + \mu_2$	0	
56	Pcen	(+, +, +), (+, +, -), (+, -, +), (+, -, -)	\mathbb{Z}^5	$\mathbb{Z}^2 + \mathbb{Z}_2$	0	0	
00	1 0010	$(-, -, -)_{1/2}, (-, +, +), (-, +, -), (-, -, +)$	\mathbb{Z}^3	\mathbb{Z}_2	\mathbb{Z}_2	0	
57	Pbcm	$(+, +, +)_0, (+, +, -), (-, +, +), (-, +, -)$	\mathbb{Z}^5	$\mathbb{Z}^{\tilde{2}} + \mathbb{Z}_{2}$	0	0	
		$(-, -, -)_{1/2}, (+, -, +), (+, -, -), (-, -, +)$	\mathbb{Z}^4	\mathbb{Z}^2	\mathbb{Z}	0	
58	Pnnm	$(+, +, +)_0, (-, -, -)_{1/2}, (-, +, +), (+, -, -)$	\mathbb{Z}^8	\mathbb{Z}_2	\mathbb{Z}	0	
		(+, +, -), (+, -, +), (-, +, -), (-, -, +)	$\mathbb{Z}_{\overline{2}}$	$\mathbb{Z}^4 + \mathbb{Z}_2$	0	0	
59	Pmmn	$(+, +, +)_0, (+, +, -), (+, -, +), (+, -, -)$	"∐" 7773	Z ⁴	0	0	
60	Dhom	$(-, -, -)_{1/2}, (-, +, +), (-, +, -), (-, -, +)$	∭- 774	$\mathbb{Z}^- + \mathbb{Z}_2$	<u></u>	0	
61	Phea	all	\mathbb{Z}^3	$Z_{+} Z_{2}^{2}$	0	0	
62	Pnma	$(+, +, +)_0, (+, -, +), (-, +, +), (-, -, +)$	\mathbb{Z}^4	$\mathbb{Z} + \mathbb{Z}_2^2$	0	0	
	1 101100	$(-, -, -)_{1/2}, (+, -, -), (-, +, -), (+, +, -)$	\mathbb{Z}^3	$\mathbb{Z} + \mathbb{Z}_2$	\mathbb{Z}	Õ	
63	Cmcm	$(+, +, +)_0, (+, +, -)$	\mathbb{Z}^8	\mathbb{Z}^2	0	0	
		$(-, -, -)_{1/2}, (-, -, +)$	\mathbb{Z}^5	\mathbb{Z}	\mathbb{Z}^2	0	
		(+, -, +), (+, -, -)	\mathbb{Z}^2	\mathbb{Z}^3	\mathbb{Z}	0	
-		(-, +, +), (-, +, -)	\mathbb{Z}^4	\mathbb{Z}^4	0	0	
64	Cmca	$(+, +, +)_0, (+, +, -)$	Z'	$\mathbb{Z} + \mathbb{Z}_2$	0	0	
		$(-, -, -)_{1/2}, (-, -, +)$	2 72	0	$\mathbb{Z} + \mathbb{Z}_2$	0	
		(+, -, +), (+, -, -)	/∐- 7/3	7/3	12 0	0	
65	Cmmm	(-, +, +), (-, +, -) $(+ + +)_0$	Z^{18}	0	0	0	
00	C minim	$(-, -, -)_{1/2}$	\mathbb{Z}^8	0	\mathbb{Z}^4	0	
		(+, +, -), (+, -, +)	\mathbb{Z}^2	\mathbb{Z}^8	0	0	
		(-, +, +)	\mathbb{Z}^6	\mathbb{Z}^6	0	0	<i>i</i>
		(+, -, -)	\mathbb{Z}^6	\mathbb{Z}^2	\mathbb{Z}^2	0	(Cont.)
	a	(-, +, -), (-, -, +)	\mathbb{Z}^{3}	\mathbb{Z}^4	Z	0	(00110)
66	Ccem	$(+, +, +)_0, (+, -, -)$	211 777	0		0	
		$(-, -, -)_{1/2}, (-, +, +)$ (+, +, -), (+, -, +)	12	114 777	0	0	
		(+, +, -), (+, -, +) (-, +, -), (-, -, +)	\mathbb{Z}^3	\mathbb{Z}^3	Zo	0	
67	Cmma	$(+,+,+)_0$	\mathbb{Z}^{13}	Z	0	0	
		$(-, -, -)_{1/2}$	\mathbb{Z}^5	Z	$\mathbb{Z}^2 + \mathbb{Z}_2$	0	another 5 r
		(+, +, -), (+, -, +)	\mathbb{Z}^5	\mathbb{Z}^5	0	0	
		(-, +, +)	$\mathbb{Z}_{\mathbb{Z}}$	$\mathbb{Z}_{2}^{7} + \mathbb{Z}_{2}$	0	0	
		(+, -, -)	\mathbb{Z}^{3}	\mathbb{Z}^3	\mathbb{Z}_2^2	0	
00	a	(-, +, -), (-, -, +)	Z°	2	14	0	
68	Ccca	$(+, +, +)_0, (+, -, -)$	∭.' 773	//⊥ 7//3	//_2 7/	0	
		$(-, -, -)_{1/2}, (-, +, +)$ $(+, +, -)_{1/2}, (+, -, +)$	\mathbb{Z}^4	77.4	¹¹ 2 0	0	
		(-, +, -), (-, -, +)	\mathbb{Z}^6	0	\mathbb{Z}_2	0	
69	Fmmm	$(+, +, +)_0$	\mathbb{Z}^{15}	0	0	0	
		$(-, -, -)_{1/2}$	\mathbb{Z}^6	0	$\mathbb{Z}^3 + \mathbb{Z}_2$	0	
		(+, +, -), (+, -, +), (-, +, +)	\mathbb{Z}^3	\mathbb{Z}^6	0	0	
		(+, -, -), (-, +, -), (-, -, +)	\mathbb{Z}^4	\mathbb{Z}^2	Z	0	
70	Fddd	$(+, +, +)_0, (+, -, -), (-, +, -), (-, -, +)$	Z ³	0	² / ₂	0	
71	Imme	$(-, -, -)_{1/2}, (+, +, -), (+, -, +), (-, +, +)$	∭15	<u>//</u>	0	0	
(1	1 11111111	$(-, -, -)_{1/2}$	\mathbb{Z}^6	Zo	\mathbb{Z}^3	0	
		(+, +, -), (+, -, +), (-, +, +)	\mathbb{Z}^3	\mathbb{Z}^6	0	0	
		(+, -, -), (-, +, -), (-, -, +)	\mathbb{Z}^4	\mathbb{Z}^2	\mathbb{Z}	0	

bages ...

Summary

- K-theory provides a systematic way to explore possible new topological phases.
- The band theory and space groups are naturally taken into account in the K-theory approach
- We have discovered many new topological numbers. So new topological phases should be discovered in near future.

Shiozaki-MS, Phys. Rev. B90, 166114 (2014). Shiozaki-MS-Gomi, Phys. Rev. B91, 155120 (2015). Shiozaki-MS-Gomi, Phys. Rev. B93, 195413 (2016). Shiozaki-MS-Gomi, Phys. Rev. B95, 235425 (2017). Shiozaki-MS-Gomi, arXiv:1802.06694 Okuma-MS-Shiozaki, arXiv:1810.12601

c.f) Po-Watanabe-Vishiwanath, Bradlyn et al, Chen Fang's and collarborators works