KEK連携コロキウム・研究会エディション 「量子多体系の素核・物性クロスオーバー」 2019年1月14日~16日 高エネルギー加速器研究機構(KEK) つくばキャンパス 4号館セミナーホール

物質との超強結合で 横電磁場は相転移するか?

馬場基彰(BAMBA Motoaki)

大阪大学 国際共創大学院学位プログラム推進機構 特任講師(常勤) 大阪大学 大学院基礎工学研究科 招へい教員(兼任) 科学技術振興機構 さきがけ研究者(兼任)

共同研究者•研究費•解説記事

主な共同研究者

 Xinwei Li (Rice), Weilu Gao (Rice), 河野淳一郎(Rice), 小川哲生(阪大), 井元信之(阪大), 猪股邦宏(産総研), 中村泰信(東大)

研究費

 JST さきがけ, 科研費(20104008, 24-632, 26287087, JP16H02214, 26220601, 15K17731), 最先端研究開発支援プログラムFIRST, 革新的研究 開発推進プログラムImPACT

解説記事

- 馬場基彰, 日本物理学会誌 73(8), 540-541 (2018)
- 馬場基彰, パリティ **32**(11), 35-40 (2017)
- 馬場基彰, 固体物理 **52**(9), 459-476 (2017)

Optical Science & Technology

Images by Wikipedia

Photo-emission processes

Thermal radiation

Spontaneous emission Stimulated emission

Displays

- Thermal radiation and photoelectric effect contribute the development of quantum theory.
- A variety of devices has been developed.

Photovoltaics

Light-matter dynamics (non-equilibrium)

Even in **thermal equilibrium**, **ultra-strong** *g* makes a dramatic phenomenon

Phase transition of transverse EM field

Super-radiant phase transition (SRPT) proposed in 1973 K. Hepp and E. H. Lieb, Ann. Phys. **76**, 360 (1973)

SRPT might appear in **special materials** with ultra-strong interaction

SRPT ($\langle \hat{a} \rangle_{eq} \neq 0$)

Phase diagram (thermal equilibrium)

- Ultra-strong interaction $g > \sqrt{\omega_a \omega_{EM}}$ is required
 - Quite large compared with typical materials in optical science & technology
- *g* is determined mainly by **materials** (not enhanced by radiation power)
- Since 2009, ultra-strong g has been implemented experimentally

Materials showing ultra-strong interaction 1

Inter-subband transition in QWs (THz) G. Gunter, et al., Nature **458**, 178 (2009)

Artificial atoms

in superconducting circuits (microwave) T. Niemczyk, et al., Nature Phys. **6**, 772 (2010)

8 / 25

Cyclotron transition of 2DEG (THz) G. Scalari, et al., Science **335**, 1323 (2012)

Materials showing ultra-strong interaction 2

Dye molecules (visible) T. Schwartz, et al., PRL **106**, 196405 (2011)

Magnons in YIG sphere (microwave) X. Zhang, et al., PRL **113**, 156401 (2014)

9 / 25

J. George, et al., PRL **117**, 153601 (2016)

Recent progress: Superconducting circuit

$$g / \omega_{a} = 134\%$$

LC circuit (micro-wave) & Superconducting flux qubit F. Yoshihara, et al., Nat. Phys. **13**, 44 (2017)

Experimental techniques for **ultra-strong** interactions are highly developed However, SRPT is **NOT** yet realized since the first proposal in 1973

11 / 25

History of SRPT

- 1973 Proposed theoretically
 K. Hepp and E. H. Lieb, Ann. Phys. (N.Y.) 76, 360 (1973)
- 1975 A no-go theorem of charge-mediated SRPT
 K. Rzążewski, *et al.*, Phys. Rev. Lett. **35**, 432 (1975)
- 2009 Ultra-strong interactions started to be implemented
- 2010 A non-equilibrium analogue of SRPT was demonstrated K. Baumann, et al., Nature 464, 1301 (2010)
- 2016 Proposal of thermal-equilibrium analogue of SRPT in a superconducting circuit <u>M. Bamba</u>, K. Inomata, and Y. Nakamura, Phys. Rev. Lett. **117**, 173601 (2016)
- 2018 A step toward another thermal-equilibrium analogue in experiment with magnetic material ErFeO₃
 X. Li, <u>M. Bamba</u>, N. Yuan, Q. Zhang, Y. Zhao, M. Xiang, K. Xu, Z. Jin, W. Ren, G. Ma, S. Cao, D. Turchinovich, and J. Kono, Science 361, 794 (2018)

No-go theorem of charge-mediated SRPT

12

Hamiltonian of EM fields and charges

Maxwell equations Newton's equation (Lorentz force) $\nabla \cdot \boldsymbol{E}(\boldsymbol{r},t) = \rho(\boldsymbol{r},t)/\epsilon_0$ $m_i \ddot{\boldsymbol{r}}_i(t) = q_i \boldsymbol{E}(\boldsymbol{r}_i, t) + q_i \dot{\boldsymbol{r}}_i(t) \times \boldsymbol{B}(\boldsymbol{r}_i, t)$ $\boldsymbol{\nabla} \cdot \boldsymbol{B}(\boldsymbol{r},t) = 0$ Charge density: $\rho(\mathbf{r}) = \sum_{i} q_{i} \delta(\mathbf{r} - \mathbf{r}_{i})$ $\nabla \times E(\mathbf{r},t) = -\dot{B}(\mathbf{r},t)$ $\nabla \times \boldsymbol{B}(\boldsymbol{r},t) = \mu_0 \boldsymbol{J}(\boldsymbol{r},t) + \dot{\boldsymbol{E}}(\boldsymbol{r},t)/c^2$ Current denstiy: $J(\mathbf{r}) = \sum_{i} q_{i} \dot{\mathbf{r}}_{i} \delta(\mathbf{r} - \mathbf{r}_{i})$ In Coulomb gauge ($\nabla \cdot A = 0$) Minimal-coupling Hamiltonian (velocity form) $\widehat{H}_{\min} = \int \mathrm{d}\boldsymbol{r} \left\{ \frac{\varepsilon_0 \widehat{\boldsymbol{E}}_{\perp}(\boldsymbol{r})^2}{2} + \frac{\widehat{\boldsymbol{B}}(\boldsymbol{r})^2}{2\mu_0} \right\} + \sum_{j=1}^{j} \frac{\left[\widehat{\boldsymbol{p}}_j - q_j \widehat{\boldsymbol{A}}(\widehat{\boldsymbol{r}}_j)\right]^2}{2m_i} + V(\{\widehat{\boldsymbol{r}}_j\})$ Unitary transform (in long-wavelength approximation) Hamiltonian in length form (electric dipole "gauge") $\widehat{H}_{\text{len}} = \int \mathrm{d}\boldsymbol{r} \left\{ \frac{\left[\widehat{\boldsymbol{D}}(\boldsymbol{r}) - \widehat{\boldsymbol{P}}(\boldsymbol{r})\right]^2}{2\varepsilon_0} + \frac{\widehat{\boldsymbol{B}}(\boldsymbol{r})^2}{2\mu_0} \right\} + \sum_{i} \frac{\widehat{\boldsymbol{p}}_{i}^2}{2m_j} + V(\{\widehat{\boldsymbol{r}}_{j}\})$

K. Rzążewski, K. Wódkiewicz, & W. Żakowicz, PRL **35**, 432 (1975) 14 / 25

A no-go theorem of charge-mediated SRPT

Another no-go theorem (classical theory)

$$\widehat{H}_{\text{len}} = \int \mathrm{d}\boldsymbol{r} \left\{ \frac{\left[\widehat{\boldsymbol{D}}(\boldsymbol{r}) - \widehat{\boldsymbol{P}}(\boldsymbol{r})\right]^2}{2\varepsilon_0} + \frac{\widehat{\boldsymbol{B}}(\boldsymbol{r})^2}{2\mu_0} \right\} + \sum_j \frac{\widehat{\boldsymbol{p}}_j^2}{2m_j} + V(\{\widehat{\boldsymbol{r}}_j\})$$

$$\widehat{H}_{\text{len}} = \int \mathrm{d}\boldsymbol{r} \left\{ \frac{\widehat{\boldsymbol{D}}(\boldsymbol{r})^2 + \widehat{\boldsymbol{P}}(\boldsymbol{r})^2}{2\varepsilon_0} - \frac{\widehat{\boldsymbol{D}}(\boldsymbol{r}) \cdot \widehat{\boldsymbol{P}}(\boldsymbol{r})}{\varepsilon_0} + \frac{\widehat{\boldsymbol{B}}(\boldsymbol{r})^2}{2\mu_0} \right\} + \sum_j \frac{\widehat{\boldsymbol{p}}_j^2}{2m_j} + V(\{\widehat{\boldsymbol{r}}_j\})$$
"Energy cost < Interaction energy" cannot be obtained
J. M. Knight, Y. Aharonov, and G. T. C. Hsieh, PRA **17**, 1454 (1978).

- More rigorous quantum analyses were also performed I. Bialynicki-Birula and K. Rzążewski, PRA 19, 301 (1979);
 K. Gawędzki and K. Rzążnewski, PRA 23, 2134 (1981).
- Counter examples are still being discussed
 T. Grieβer, A. Vukics, and P. Domokos, PRA 94, 033815 (2016);
 G. Mazza and A. Georges, arXiv:1804.08534 [cond-mat.str-el].
- Charge-mediated light-matter interactions hardly give the SRPT

Motivation and Recent Progresses

Images by Wikipedia ¹⁷ / ²⁵

Motivation and strategy in SRPT study

Optical Science & Technology

Non-equilibrium dynamics of light and matters

<u>Condensed matters &</u> <u>Thermodynamics</u>

Thermal equilibrium of matters

Motivation

- Introduction of heat & phase transitions into optical science
- Realization of SRPT enhances the potential of **optical technology** and advances the **non-equilibrium** statistical physics

Strategy

- Experimental demonstration of analogues in a variety of systems
- Interaction mediated by spins or something except charges

Recent theoretical progresses on SRPT

- Quantum chaos, entanglement entropy, critical exponent, etc. in SRPT
 C. Emary and T. Brandes, PRL 90, 044101 (2003); C. Emary and T. Brandes, PRE 67, 066203 (2003); N. Lambert, C. Emary, and T. Brandes, PRL 92, 073602 (2004); J. Larson and E. K. Irish, J. Phys. A Math. Theor. 50, 174002 (2017); etc.
- Analyses of non-equilibrium SRPT (in cold atoms) e.g., P. Kirton, *et al.*, Adv. Quantum Technol. 1800043 (2018); H. J. Carmichael, Phys. Rev. X 5, 031028 (2015).
- Proposals of charge-mediated thermal SRPT (controversial)
 T. Grieβer, A. Vukics, and P. Domokos, PRA 94, 033815 (2016);
 - G. Mazza and A. Georges, arXiv:1804.08534 [cond-mat.str-el].
- Reminding the importance of spin for thermal SRPT
 <u>M. Bamba</u> and T. Ogawa, PRA 90, 063825 (2014)
 - Originally, J. M. Knight, Y. Aharonov, and G. T. C. Hsieh, PRA **17**, 1454 (1978)
- Superconducting circuit showing a thermal "SRPT" <u>M. Bamba</u>, K. Inomata and Y. Nakamura, PRL 117, 173601 (2016)

Recent experimental progresses for SRPT

- Signature (?) of charge-mediated SRPT (2DEG cyclotron resonance)
 J. Keller, G. Scalari, F. Appugliese, C. Maissen, J. Haase, M. Failla, M. Myronov, D. R. Leadley, J. Lloyd-Hughes, P. Nataf, and J. Faist, arXiv:1708.07773 [cond-mat.mes-hall]
- Quantitative evaluation of additional energy cost of EM fields
 X. Li, <u>M. Bamba</u>, Q. Zhang, S. Fallahi, G. C. Gardner, W. Gao, M. Lou, K. Yoshioka,
 M. J. Manfra, and J. Kono, Nature Photonics 12, 324 (2018)
- Samples embedding carbon nanotubes with easily-tunable g
 W. Gao, X. Li, <u>M. Bamba</u> and J. Kono, Nature Photonics 12, 362 (2018)
- A step toward "SRPT" in magnetic material ErFeO₃
 X. Li, <u>M. Bamba</u>, N. Yuan, Q. Zhang, Y. Zhao, M. Xiang, K. Xu, Z. Jin, W. Ren, G. Ma, S. Cao, D. Turchinovich, and J. Kono, Science **361**, 794 (2018)

Cooperative interaction in magnetic material ErFeO₃

X. Li, <u>M. Bamba</u>, N. Yuan, Q. Zhang, Y. Zhao, M. Xiang, K. Xu, Z. Jin, W. Ren, G. Ma, S. Cao, D. Turchinovich, and J. Kono, Science **361**, 794 (2018)

A step toward "SRPT" in magnet

- Spin degree of freedom may cause a SRPT, which is hardly obtained only by charge-mediated interactions
 - Design of artificial structures of magnetic materials is a potential strategy
- ErFeO₃ shows a phase transition at T = 4.5 K, where Er³⁺ spins are ordered antiferromagnetically
 - Originating from short-range Er–Er interactions? (standard picture)

- This picture works ($g \propto \sqrt{N}$) for the interaction between Er³⁺ ensemble and Fe³⁺ magnons
 - A step toward "SRPT" where **photons** are replaced by **magnons**

Absorption spectra

Evidence of cooperative interaction

 Cooperative interaction mediated by magnons instead of photons long discussed in quantum optics
 X. Li, <u>M. Bamba</u>, N. Yuan, Q. Zhang, Y. Zhao, M. Xiang, K. Xu, Z. Jin, W. Ren, G. Ma, S. Cao, D. Turchinovich and J. Kono, Science **361**(6404), 794–797 (2018)

Theoretical analysis

- Reduction of a spin model of $ErFeO_3$ into Dicke model ($g \propto x^{1/2}$)
- Fe³⁺ Er³⁺ exchange strength J was estimated from experimental g

 $\overline{i=1}$

Analogy with SRPT is under investigation $(2g > \sqrt{\omega_{\rm FM}\omega_{\rm Er}})$

 $\overline{i=1}$

Summary

- The SRPT introduces heat & phase transition into optical science
- Its non-equilibrium analogue was demonstrated in cold atoms
- Thermal SRPT is not yet realized (charge-mediated SRPT is hard)
- Thermal SRPT analogue was predicted in superconducting circuit
- Thermal spin-mediated SRPT (analogue) is now being explored

Remaining problems

- Experimental distinguishability from magnetic phase transitions
- Magnetic transition dipoles are basically small, etc.

Thermal-equilibrium analogue in a superconducting circuit

M. Bamba, K. Inomata, and Y. Nakamura, Phys. Rev. Lett. 117, 173601 (2016)

Superconducting circuits

- Superconducting current (or charges) in circuits is interpreted as "electromagnetic (EM) fields" and "atoms"
- Experimental techniques are highly developed together with the development of quantum computers
 - Quantum computers of D-wave, Google, IBM, etc. consist of superconducting circuits
- Advantage: We can design interaction forms of "EM fields" and "atoms"

T. Niemczyk, et al., Nature Phys. 6, 772 (2010)

http://www.sei.co.jp/super/about/feature.html

Circuit showing "SRPT"

Low temperature

Superconducting circuit showing "SRPT"

<u>M. Bamba</u>, K. Inomata, and Y. Nakamura, PRL **117**, 173601 (2016)

Current $I = \phi/L_{\rm R}$ Flux ϕ $\begin{array}{c|c} & & & L_g & \uparrow \phi - \psi_1 & L_g & \uparrow \phi - \psi_2 & L_g & \uparrow \phi - \psi_N \\ \hline & & & & \downarrow \psi_1 - \Phi_{ext} & \uparrow \psi_2 - \Phi_{ext} & & \uparrow \psi_N - \Phi_{ext} \\ \hline & & & & E_J C_J & & E_J C_J & & E_J C_J \end{array}$ Charge Flux difference Charge Effective flux Flux | $\widehat{H} = \frac{\widehat{q}^2}{2C_{\rm R}} + \frac{\widehat{\phi}^2}{2L_{\rm R}} + \sum_{i=1}^{N} \left| \frac{\left(\widehat{\phi} - \widehat{\psi}_j\right)^2}{2L_g} + \frac{\widehat{\rho}_j^2}{2C_{\rm J}} + E_{\rm J}\cos\frac{2\pi\widehat{\psi}_j}{\Phi_0} \right|$

"Photonic" variables $[\hat{\phi}, \hat{q}] = i\hbar$ "Atomic" variables $[\hat{\psi}_j, \hat{\rho}_{j'}] = i\hbar\delta_{j,j'}$

External magnetic flux $\Phi_{ext} = \Phi_0/2$ flips the sign ($\Phi_0 = h/2e$)

Phase diagram of superconducting current

Flux amplitude $\phi_{eq} = L_R I_{eq}$ is calculated through $Z(T) = Tr[e^{-\hat{H}/k_BT}]$ in thermodynamic limit $(N \to \infty)$

Parameters $L_{\rm J} = 0.75 \text{ nH}$ $L_g = 0.6L_{\rm J} = 0.45 \text{ nH}$ $C_{\rm J} = 24 \text{ fF}$ $C_{\rm R0} = 2 \text{ fF} = C_{\rm R}/N$ $L_{\rm R0} = NL_{\rm R}$

- A second-order phase transition appears
- The circuit Hamiltonian is certainly reduced to the Dicke model
- The "photonic" flux $\phi_{eq} \neq 0$ get an amplitude spontaneously (persistent current appears)

Why we can get "SRPT" ?

31 / 25