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Origin of macroscopic irreversibility

micro (Quantum mechanics)

reversible (unitary)

MACRO (Thermodynamics)

irreversible 0S

Fundamental question since Boltzmann



Bloch group,  Nature physics (2012)

Experiments:

Modern progress

Numerical simulation:

Exact diagonalization

Hard-core bosons

M. Rigol et al., Nature 452, 854 (2008)

Superconducting qubits

Martinis group, Nature Physics (2016)

Ultracold atoms



A pure state can reach thermal equilibrium after 
(reasonable) relaxation time by unitary dynamics

When and why  𝑂 ≃ tr[𝑂𝜌MC] ?

Long-time average Microcanonical average

Quantum ergodicity

Long time average  𝑂

𝑡

〈𝜓 𝑡 𝑂 𝜓 𝑡 〉
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Eigenstate-thermalization hypothesis (ETH)

All the energy eigenstates are thermal

Srednicki, PRE 50, 888 (1994); Rigol, Dunjko, Olshanii, Nature 452, 854 (2008)

𝐸𝑖 𝑂 𝐸𝑖 ≃ tr[𝑂𝜌MC]

Believed to be true (from numerical evidences)
only for non-integrable systems under reasonable assumptions
(e.g., local interaction, translation invariance,…)

Microcanonical average

Sufficient condition for thermalization!

Long time average=  𝑖 𝑐𝑖
2 𝐸𝑖 𝑂 𝐸𝑖 ≃ tr[𝑂𝜌MC]



K. Kaneko, E. Iyoda, T. Sagawa, Bulletin of Physical Society of Japan (2018)

Integrable: XXZ, Non-integrable: XXZ +nnn



Especially, we focus on situations where:
• 𝑑-dim, periodic boundary
• Local interaction
• Translation invariant  ⇒ No localization
• Exponential decay of correlation functions  ⇒ Not on a critical point

𝑁: the system size (the number of the lattice sites)
𝐷: the dimension of the microcanonical energy shell

Boltzmann entropy: 𝑆 = 𝑘B ln 𝐷

Lattice systems

A good platform to study quantum many-body systems
 Fundamental theorems have been rigorously established
 Various numerical studies
 Experimentally accessible with ultracold atoms

M. Cheneau et al., Nature 481, 484 (2012)



Formalize ETHs

Strong ETH:  All the energy eigenstates are thermal
Weak ETH:  Almost all the energy eigenstates are thermal 

Let 𝑂 an observable with 𝑂 = 1.

An energy eigenstate |𝐸𝑖〉 is called 𝜀-thermal with respect to 𝑂 iff
tr 𝑂𝜌MC − 〈𝐸𝑖 𝑂 𝐸𝑖〉 < 𝜀.

Let 𝜀 > 0.

Let 𝐷out
𝜀 be the number of eigenstates |𝐸𝑖〉 that are not 𝜀-thermal.  

𝐸𝑖 𝑂 𝐸𝑖

tr 𝑂𝜌MC

𝜀−𝜀

Now define:

 (𝐻, 𝑂) satisfies the strong ETH, iff
for any 𝜀 > 0, there exists 𝑁0 such that for all 𝑁 ≥ 𝑁0, 𝐷out

𝜀 = 0.

 (𝐻, 𝑂) satisfies the weak ETH, iff for any 𝜀 > 0, lim
𝑁→∞

𝐷out
𝜀

𝐷
= 0.

Rem. If the Hamiltonian has degeneracy, we should add “there exists an energy eigenbasis…”



Validity of ETH

Strong 
ETH

Weak 
ETH

Nonintegrable

Integrable

Localized

○ ○

× ○

× ×

Thermalization to 
microcanonical

○

×

×

Integrable system does not thermalize:
Strong ETH is the plausible scenario of thermalization!



Weak ETH: Variance 

𝑂: quasi-local observable with 𝑂 = 1,
Size of its support: |supp𝑂| = 𝒪(𝑁𝛼), 0 ≤ 𝛼 < 1/2

Fluctuation over energy eigenstates:

Δ𝑂wETH
2 ≔
1

𝐷
 
𝑖∈𝑀
𝐸𝑖 𝑂 𝐸𝑖 − tr 𝑂𝜌MC

2 𝐸𝑖 𝑂 𝐸𝑖

tr 𝑂𝜌MC

Δ𝑂wETH

Make some additional assumptions:
that are needed for the local equivalence of ensembles:
 Exponential decay of correlations ⇒ Not on a critical point
 Rapid convergence of the free energy

The case of  𝛼 = 0 was discussed by Biroli, Kollath, Läuchli, PRL 105, 250401 (2010) 

(But their proof was not rigorous.  Our proof is based on the local equivalence of ensembles by Tasaki, arXiv:1609.0698)

𝛿 > 0: can be arbitrarily small

Iyoda, Kaneko, Sagawa, Phys. Rev. Lett. 119, 100601 (2017)

Δ𝑂wETH
2 ≤ 𝒪(𝑁−

1−2𝛼
4 +𝛿)

Our theorem:

In reality (numerics): 

Integrable: Δ𝑂wETH
2 = 𝑂(𝑁−1),    Non-integrable: Essentially, Δ𝑂wETH

2 = 𝑒−𝑂 𝑁



Weak ETH: Large deviation

This is rigorous and applicable to both integrable and non-integrable cases

Under the assumptions of translation invariance, not on a critical point, etc

𝐸𝑖 𝑂 𝐸𝑖

tr 𝑂𝜌MC

𝜀−𝜀

𝐷out
𝜀

𝐷
≤ exp(−𝛾𝜀𝑁 + 𝑜(𝑁))

𝑂: local observable with 𝑂 = 1

𝛾𝜀 > 0, 𝛾𝜀 = 𝒪(𝜀
2)

𝐷: dimension of the microcanonical energy shell
𝐷out
𝜀 : the number of athermal eigenstates
𝑁: the number of lattice sites 

K. Netocny, F. Redig, J. Stat. Phys. 117, 521 (2004).
M. Lenci, L. Rey-Bellet, J. Stat. Phys. 119, 715 (2005).
Y. Ogata, Comm. Math. Phys. 296, 35 (2010).

H. Tasaki, J. Stat. Phys. 163, 937 (2016).
T. Mori, arXiv:1609.09776 (2016) .

But this theorem does not guarantee the strong ETH, 

because 𝐷out
𝜀 itself can be exponentially large (as 𝐷 is exponentially large)



Outline

• Introduction

• Eigenstate thermalization hypothesis (ETH)

– Review of ETH

– Our result: Numerical large deviation analysis

• Second law and fluctuation theorem

– Conventional setup

– Our result: SL and FT for pure quantum states



Numerical large deviation analysis

𝐸𝑖 𝑂 𝐸𝑖

tr 𝑂𝜌MC

𝜀−𝜀
Slightly modified definition of 
athermal eigenstates:

Cf. The previous (standard) definition:

tr 𝑂𝜌MC(𝐸, Δ) − 〈𝐸𝑖 𝑂 𝐸𝑖〉 > 𝜀, 𝒪 1 ≤ Δ ≤ 𝒪( 𝑁)

Let 𝐷out be the number of eigenstates 𝑖 ∈ 𝑀(𝐸, Δ) that are not thermal 
in the following sense:

tr 𝑂𝜌MC 𝐸𝑖 , 𝛿 − 𝐸𝑖 𝑂 𝐸𝑖 > 𝜀
Δ = 𝒪 𝑁 , 𝛿 = 𝒪(1)

T. Yoshizawa, E. Iyoda, T. Sagawa, 
PRL 120, 200604 (2018).



Numerical large deviation analysis: Integrable

1d spin chain (= hardcore bosons)

Exponential decay of 𝐷out/𝐷 Strong ETH is false

Integrable case: XX model 

T. Yoshizawa, E. Iyoda, T. Sagawa, PRL 120, 200604 (2018).



Numerical large deviation analysis: Non-integrable

Nonintegrable case: XXX +nnn

: XXX Hamiltonian : next-nearest term

𝜆 : intergrability-breaking parameter

𝜆 = 0

𝜆 = 1

Double exponential decay of 𝐷out/𝐷
Strong ETH is true
(even near integrability!)

T. Yoshizawa, E. Iyoda, T. Sagawa, PRL 120, 200604 (2018).



Double exponential decay of 𝐷out/𝐷

An example of the fitting

Consistent with random matrix theory

T. Yoshizawa, E. Iyoda, T. Sagawa, PRL 120, 200604 (2018).



Validity of ETH

Strong 
ETH

Weak 
ETH

Nonintegrable

Integrable

Localized

○ ○

× ○

× ×

Thermalization to 
microcanonical

○

×

×
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0

1e

Second law Entropy production is non-negative on average

Fluctuation theorem Universal relation far from equilibrium

Second law as an equality!

Classical Quantum (Ion-trap)

J. Liphardt et al., 

Science 296, 1832 (2002) 

A. An et al., Nat. phys. 11, 193 (2015) 

RNA
Theory（1990’s-）
Dissipative dynamical systems,
Classical Hamiltonian systems, 
Classical Markov (ex. Langevin),
Quantum Unitary, Quantum Markov, …

Experiment（2000’s-）
Colloidal particle, Biomolecule,
Single electron, Ion trap, NMR, …

Second law and fluctuation theorem



Total system: system S and bath B

(arbitrary: Not necessarily on a lattice!)

S+B obeys unitary dynamics

 Initial state of S: arbitrary

 Initial state of B: Canonical
→ This is a very special assumption that leads to the second law.

 No initial correlation between S and B.

B

H
Ze B /)0(ˆ   ),0(ˆ)0(ˆ)0(ˆ

ˆ

BBS

 


)ˆexp(ˆ   ,ˆ)0(ˆˆ)(ˆ † tHiUUUt  

Setup for previous studies
By J. Kurchan, H. Tasaki, C. Jarzynski, …

BIS
ˆˆˆˆ HHHH 

system S

bath B
(Inv. Temp.      )



Information entropy and Heat are linked!
（if the initial state of bath B is canonical）

   )(ˆtr)(ˆ   ,)(ˆln)(ˆtr)( BSSSSS tttttS  

 BB
ˆ))0(ˆ)(ˆ(tr HtQ  

QS  S

Second law (Clausius inequality)

0S  QS  : entropy production on average
(non-negative)

system S

bath B
(Inv. Temp.      )

von Neumann 

entropy
Heat



Projection measurements of          at initial and final times
Difference of outcomes:

：stochastic entropy production (fluctuates)

BHtt ˆ)(ˆln)(ˆ S  



)(ˆ t


Fluctuation theorem

Let

Integral fluctuation theorem (Jarzynski equality)

1e
Second law can be expressed by 

an equality with full cumulants

(even if S is far from equilibrium)

Reproduces the second law by

and the fluctuation-dissipation theorem, etc.

   ee

system S

bath B
(Inv. Temp.      )
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Second law for a single energy eigenstate?

Our theorem (roughly):

Δ𝑆𝑆 − 𝛽𝑄 ≥ −𝜀 holds for most of the energy eigenstates

Conventional derivation of the second law:
The initial canonical distribution of the bath ⇒ The second law

ETH argument:
Even a single energy eigenstate can be thermal;
The canonical distribution is just a statistical-mechanical ansatz to compute 
thermodynamic quantities in equilibrium.

Question:
Is it possible to prove the second law when the initial state of the bath is 
a single energy eigenstate, as a theorem of quantum mechanics?



Setup

• Small system S is locally in contact with 

a large bath B:   𝐻 = 𝐻S +𝐻I +𝐻B

• Initial state: 𝜌(0) = 𝜌S(0) ⊗ |𝐸𝑖〉〈𝐸𝑖|

𝜌S(0) is arbitrary, |𝐸𝑖〉 is a thermal eigenstate

• B is on a lattice and satisfies some assumptions required for 
the ETH and the “Lieb-Robinson bound.”  Especially:

– Local interaction

– Translation invariant ⇒ No localization

– Exponential decay of correlations ⇒ Not on a critical point

System S

Bath B

(on a lattice)



  QSS



Even though the state of B is an energy eigenstate, 
information and thermodynamics are linked

：Small error term

For any , for any t, there exists a sufficiently large bath, such that...

→ Mathematically rigorous 

0

Second law (Clausius inequality)

Size of the bath: )( )21(4   ON

0)( / dNO  Lieb-Robinson time: 2/10 



→ smallvt /)B,dist(S 0 

    1)exp()B,dist(SexpBˆˆ ˆ),(ˆ 00
00 BSBS   tvSOOCOtO 

Lieb-Robinson bound

E. Lieb and D. Robinson, Commun. Math. Phys. 28, 251 (1972)

M. Hastings and T. Koma, Commun. Math. Phys. 265, 781 (2006)

 : Lieb-Robinson time

/v ：Lieb-Robinson velocity

The velocity of “information propagation” 
in B is finite, due to locality of interaction

Key of the proof: Lieb-Robinson bound

B1

S is not affected by B1 in the short time regime

Effective “light-cone” like structure

boundary

∂B0

S feels as if B is in the canonical distribution 

if the initial energy eigenstate of B satisfies ETH

iE

B0

S



Universal property of thermal fluctuation far from equilibrium
emerges from quantum fluctuation of pure states

For any , for any time t, there exists a sufficiently large bath, such that…

→ Mathematically rigorous 

0

In addition, is assumed.
If this commutator is not zero but small, 
a small correction term is needed.

0],[ IBS  HHH

Integral fluctuation theorem

  1e

Size of the bath: )( )21(4   ON

0)( / dNO  Lieb-Robinson time: 2/10 



   
ji

jjii

ji

ijjiii ccccgccccc
i

cH
,

††

,

†††

B
ˆ ˆˆ ˆˆ ˆˆ ˆˆˆˆ 

Hard core bosons with nearest-neighbor repulsion

11)0(ˆ
S Initial state: 

Method: Exact diagonalization (full)

Numerical simulation: Setup

0

†

0S
ˆˆˆ ccH    

j

jj ccccH
,0

0

†
0

†

I
ˆ ˆˆ ˆ'ˆ 

1.0

1.0/   ,1/   g

0} ˆ, ˆ{}ˆ,ˆ{   ,1} ˆ,ˆ{  †††
iiiiii cccccc jicccccc jijiji  for    0] ˆ, ˆ[]ˆ,ˆ[] ˆ,ˆ[ †††

B

S

(equivalent to XXZ)

Bath: 4 bosons,



Average entropy production is always non-negative

Second law

Lieb-

Robinson

Time

𝜏 ∼ 1/𝛾

Even beyond the Lieb-Robinson time
→ Kaneko, Iyoda, Sagawa, Phys. Rev. E 96, 062148 (2017).



Integral fluctuation theorem

Integral FT holds
(But quite subtle, because of the 
large finite-size effect)

Deviation comes from 
“bare” quantum fluctuation

Dynamical crossover from thermal 
fluctuation to bare quantum fluctuation

Lieb-

Robinson

Time

𝜏 ∼ 1/𝛾



Estimation of the LR time 𝜏

Coffee in a room: 𝜏 ∼ms very short!

If air of the room was in an energy eigenstate, 

then the FT would hold only in such a short time scale.

M. Cheneau et al., Nature 481, 484 (2012)

Ultracold atoms: 𝜏 ∼ 𝐿1/2ℏ/𝐽

Can be hundreds times of the 

experimental time scale ℏ/𝐽

𝐽: tunneling amplitude

𝐿: the side length (the number of the sites) of the system

Clear verification of the FT would be possible



For pure states under reversible unitary dynamics,

 Second law

relates thermodynamic heat and the von Neumann entropy
Both in the short and long time regimes

 Fluctuation theorem

Fundamental property of entropy production far from equilibrium
Only in the short time regime

2ndS   QS

Key ideas: ETH and Lieb-Robinson bound

Summary

FT1  e

B1

S

iE

B0

E. Iyoda, K. Kaneko, T. Sagawa,
Phys. Rev. Lett. 119, 100601 (2017)
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Thank you for your attention!


