

フォトンファクトリー Photon Factory

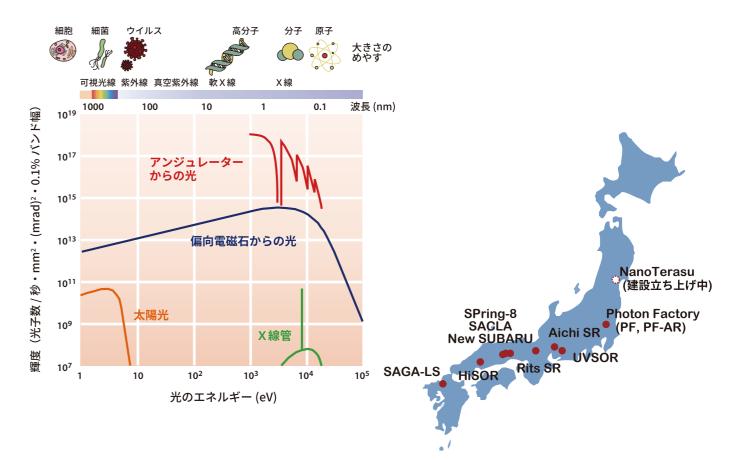
高エネルギー加速器研究機構 放射光実験施設

高エネルギー加速器研究機構 (KEK) の放射光実験施設は、光の工場という意味の「フォトンファクトリー (Photon Factory, PF)」の愛称で親しまれています。加速器がつくる、明るく波長の短い「放射光」で、物質や生命を原子のスケールで観察します。

フォトンファクトリーの 2.5 GeV 放射光リング (PF リング) は、X 線領域の放射光が利用できる国内最初の専用施設として、1982 年にファーストビームの発生に成功しました。現在までの約 40 年間に数度の大きな改造を行い、放射光の高輝度化を進めてきました。

もうひとつの放射光リング、6.5 GeV PF-AR (Photon Factory Advanced Ring) は、世界でも類をみない大強度パルス放射光源です。1987 年に素粒子実験と共存する形で放射光利用が始まり、2002 年の高度化改造により専用光源となりました。

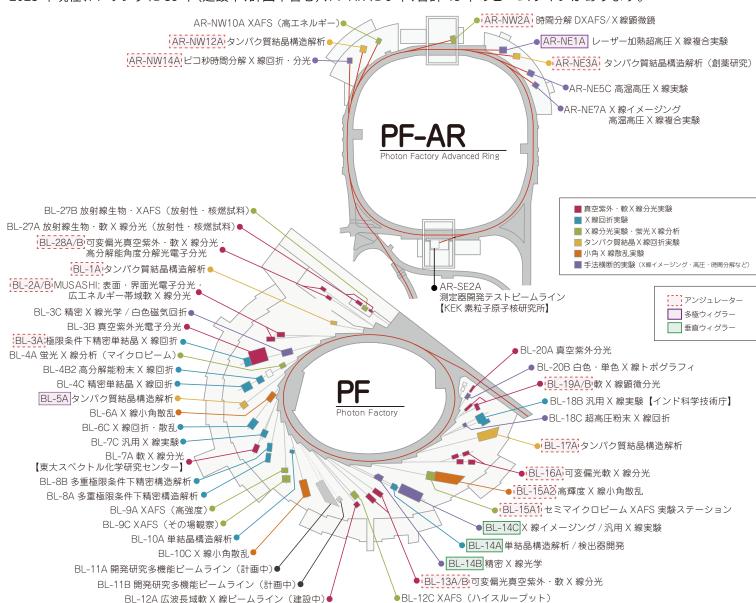
大学共同利用機関法人である KEK では、日本全国や海外の多くの研究者に、フォトンファクトリーを用いた研究の場や技術を提供してきました。生まれた成果は、物質や生命の理解を深めるとともに、持続可能な社会をつくるためのテクノロジーにもつながっています。

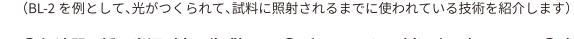

フォトンファクトリーは、KEK という世界的な加速器科学の拠点研究機関の施設という利点を活かし、世界の放射光科学を先導する加速器技術・測定技術や若手人材を生み出し続けてきました。そして、これまで見えなかったものを見えるようにする、さらに優れた「光の工場」へと、そのあゆみを進めています。

放射光とは?

放射光は、光速近くまで加速された電子が磁場によりその進行方向を変えるときに放出される光(電磁波)です。 赤外線から X 線にわたる広い波長領域の光を発生します。

波長の短い光である X 線、軟 X 線、真空紫外線は、物質のナノスケールの姿、すなわち、物質中の原子の配列や電子のふるまいなどを捉えることができます。


放射光は指向性が高い明るい光で、微小な試料でも精度良く測定ができます。また、偏光性、パルス性などの性質を持ち、分子の方向性や結合状態を調べる、物質が変化する様子を捉えるなど、光の性質を最大限に利用した研究が行われています。



2023年現在、日本には9施設・10光源の放射光(X線自由電子レーザーを含む)が稼働しています。そのうち、フォトンファクトリー、分子研UVSOR、広島大学HiSORの3施設は、学術のための放射光施設として、高度化と基盤強化のための連携を図っています。

(フォトンファクトリーのビームライン

2023 年現在、PF リングに 39 本(建設中、計画中含む)、PF-AR に 9 本、合計 48 本のビームラインがあります。

い研究を展開することができます。

放射光実験 - 光を創り、光で照らす・

BL-3A 極限条件下精密単結晶 X 線回折ビームライン ●

超伝導磁石を常設し、高磁場下での X 線回折実験が可能です。偏光を利用

した「共鳴 X 線散乱法」 により、電荷・軌道・スピンの秩序状態を調べる

構造物性研究に用いられます。スピントロニクスデバイスなど、次世代の

アンジュレーターなどの挿入光源技術 の発展により、高輝度で偏光制御された 光が得られるようになりました(写真: アンジュレーター)。

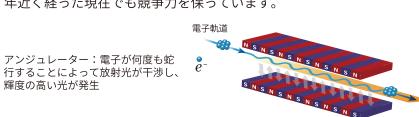
通信・記憶素子の開発にもつながります。

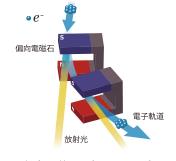
2ビームライン(光の加工)

加速器でつくられた放射光は、ビームラインで加工され、実験装置に導かれます。学術施設であるフォトンファクトリーでは、

研究者が装置を使って研究成果をあげるだけでなく、加速器やビームラインの設計にも研究者の要望を反映させ、独創性の高

加速器から発生する光は、分光器や集光 ミラーなどで加工され、実験装置に導か れます(写真:回折格子分光器)。


❸ 実験装置(光の利用) ● - - - -



加工された光を試料に照射し、データを 取得します(写真:高分解能角度分解光電 子分光装置)。

→ 光源加速器

リング型の光源加速器には、電子軌道を曲げて光を発生する偏向電磁石が円形に並んでいます。 偏向電磁石の間の直線部にはアンジュレーターと呼ばれる磁石列を並べた装置が設置されて おり、輝度の高い光を発生します。小さな試料を測定する放射光実験では、光源加速器の性能が 実験に大きく影響します。フォトンファクトリーは、最新の加速器技術による改造が何度も行わ れており、運転開始から 40 年近く経った現在でも競争力を保っています。

偏向電磁石:広いエネルギー 領域の連続光を発生

ることができるため、世界中に真空封止型アンジュレーター 中心の放射光施設が次々建設される潮流につながりました。

アンジュレーターの周期を短くして、電子ビームを蛇行させる と、エネルギーが高く強いX線を発生することができます。 加速器の真空パイプの中に磁石列を入れて短い周期を実現す る「真空封止型アンジュレーター」の開発が KEK で 1988 年頃 に始まり、1990年に PF-AR で光を発生することに成功しまし た。この技術は放射光施設をコンパクトで省エネなものに変え

世界初の真空封止型アンジュレーター(AR-NE3)

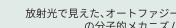
Ada Yonath 博士と、1980 年代当時のビームライン

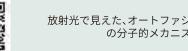
─●入射器-光源加速器ビーム輸送路

入射器で加速された電子ビームを光源加速器に導いています。入射器は、2 つの放射光リング (PF、PF-AR) にそ れぞれ電子ビームを、衝突型加速器 SuperKEKB に電子・陽電子を入射しています。2017 年に、それぞれのリ ングにエネルギーや電荷量の異なる電子・陽電子ビームを高速で切り替えて入射するための改造が完了し、 現在、2 つの放射光リングはトップアップモード (常時電子ビームが入射されて蓄積電流値を一定に保つ) で 運転されています。

┌●BL-19A/B 軟X線顕微・分光ビームライン

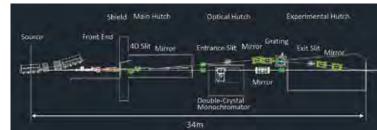
を常設しています。産業界のイノへ ーション創出や、環境・地球・惑星 科学をはじめとした多くの分野 使われています。


小惑星リュウグウからのサンプル分析も行われました。 「はやぶさ 2」微粒子分析


フォトンファクトリーと構造生物学

フォトンファクトリーでは、1980年代の半ばに最初のタンパク 質結晶構造解析専用ビームラインが完成しました。この頃にフ ォトンファクトリーで研究を行っていたのが、2009 年にリボソ ームの構造機能解析の成果でノーベル化学賞を受賞した Ada Yonath 博士です。当時開発した結晶凍結法が、構造解析の成功に つながっています。また、2016年にノーベル生理学医学賞を受賞 した大隅良典博士の共同研究チームも、オートファジー関連 タンパク質の構造解析を行い、約20報の論文を出版しています。 現在、KEK つくばキャンパスには、タンパク質の構造解析におい スタッフ(2010年3月撮影) て発展の目覚ましいクライオ電子顕微鏡も稼働しています。 生命のしくみを探る基礎研究から、創薬につながる応用研究 まで、多くの成果をあげています。

世界初の真空封止型アンジュレーターの開発





BL-11A,11B 開発研究多機能ビームライン(計画中) ●

未来の放射光科学に必要な技術開発のため、自由な実験アレンジ が可能な開発研究専用のビームラインを計画しています。若手人 材の教育にも使われます。

向けた研究開発を推進します。

2 種類のビームを同時に試料に照射する特殊な配置にも対応し、将来光源実現に

ビームライン

ームラインです。このユニークな放射光を用いた、重力の 影響を受けない水平配置のX線干渉計が設置されており、超 高感度・大視野のX線位相イメージング実験が世界最高 生能で行われています。

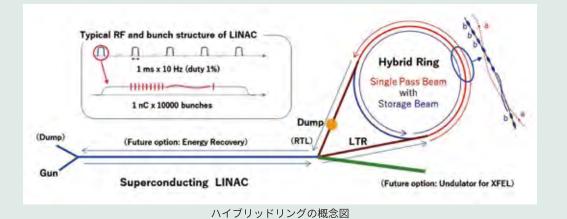
● BL-18B インドビームライン

2009 年より、インド政府科学技術: (DST)の専用ビームラインとして稼働 ています。液体表面や固液界面の回折 散乱実験などが行われています。イント の研究者による放射光利用研究、若手研 究者の育成に貢献しています。

入射器から

➡ BL-17A タンパク質結晶構造解析ビームライン

フォトンファクトリーのタンパク質結晶構造解析ビーム 天然に含まれるイオウなどを利用した構造決定法) が可能 ょ BL-1A、微小ビームで小さな結晶が解析可能な BL-17A などがあります。全てのビームラインに試料交換ロボット が設置され、世界中のどこからでも遠隔測定が可能です。


大学教育への貢献 フォトンファクトリーは、年間約 3,000 人 の研究者に利用されています。そのうちの 約半数は大学院生で、大学の研究と教育に 重要な役割を果たしています。フォトン ファクトリーを利用して得られた学位(修 士・博士)は年間約300件、これまでの累計

は約 5,000 件にのぼります。 全国の 86 国立大学のうち、67 大学から利 用の実績があります。その他にも、これまで に 24 の公立大学、98 の私立大学から利用 されており、研究分野も多岐にわたります。

世界最先端の加速器技術による将来光源の提案 フォトンファクトリーは、加速器の専門家と放射光利用実験の専門家がチームを組

んで、世界的な加速器の研究機関にふさわしい新しい光源加速器の検討を進めてい ます。「ハイブリッドリング」は、超高性能のシングルパスビームと、高性能・汎用の ストレージビームの 2 種類のビームを共存させた新しい概念の放射光リングで、 プレスリリース 2種類のビームの選択利用・同時利用が可能になります。

BL-14C 医学イメージング

世界唯一の、縦偏光を発生する垂直ウィグラーを光源とした

フォトンファクトリーを利用したい

フォトンファクトリーは、大学共同利用機関の実験施設と して、学術分野を中心とした利用研究・技術開発を支援し ています。試行錯誤を伴うような開発的な研究課題を積極 的にサポートします。

民間企業等の利用も可能である様々なプログラムも用意し ています。機器の操作方法や実験試料等の作成方法等の 指導・支援を受けられる「利用支援」「コンサルティン グ」、観察・分析・解析等を利用者に代わって実施する 「代行測定・解析」など、オプションメニューを用意して いるビームラインもあります。

PF で放射光利用実験を行うには

主に学術の利用	共同利用	・国内外の大学及び公的研究機関の教員・研究員・技術職員、成果公開型の 学術研究を認める民間企業の研究者が申請可能な学術目的の利用方法で、 放射光共同利用実験審査委員会(PF-PAC)で採否を審査します。採択された 課題は無償で実験ができます。 ・一般(G型)、初心者(P型)、緊急かつ重要(U型)、特別(S1, S2型)、 大学院生奨励(T型)のカテゴリーがあります。
	施 優 設 利 用	・国又は国が所管する独立行政法人その他これに準ずる機関が推進するプロジェクト(科研費を含む)により採択された研究課題の実施のために、有償で施設を優先的に利用する制度です。
主に企業の利用	共同研究	・民間企業等の研究者とKEKの職員が共通の課題について共同で取り組むことにより、優れた研究成果を出すことを促進する制度です。共同研究員受入料、研究経費等を負担していただきます。成果は原則として公開します。
	施 一 設 般 利 用	・有償で施設を利用できる制度です。成果は非公表とすることができます。
	施 設 行 利 用	・放射光利用が初めての方が対象の施設利用で、一般施設利用に比べて利用料が割引になっています。

フォトンファクトリーで学位を取りたい

総合研究大学院大学(総研大)は、大学共同利用機関の高度 な研究環境を活用した大学院大学です。

フォトンファクトリーでは、同大学 先端学術院 物質構造 科学コース、加速器科学コースの大学院生が研究指導を受 けながら研究を進めています。

フォトンファクトリーを見学したい

10 名以上の団体見学を受け付けています。また、KEK 一般公開、春の科学技術週間など、個人で見学できるイベントも開催 されています。KEK 広報室 見学担当 kengaku@kek.jp にお問い合わせください。

フォトンファクトリーを支援したい

フォトンファクトリー先端化寄附金は、フォトンファクトリーの研究環境整備と将来計画推進 のために使用されます。フォトンファクトリーの未来のために、皆様の温かいご支援をよろしく お願い申し上げます。

> フォトンファクトリー先端化寄附金 ご支援のお願い

📿 放射光実験施設 Photon Factory

〒305-0801 茨城県つくば市大穂 1-1 Tel. 029-864-5635(フォトンファクトリー事務室) https://www2.kek.jp/imss/pf/