X線非弾性散乱による 電子の動的構造の研究

Study of electron dynamics

Choice of 3+1 dimensions

At present, resonant enhancement is necessary for electronic excitations $\rightarrow \underline{RIXS}$

Progress of energy resolution

soft x-ray (Cu L₃-edge)

hard x-ray (Cu K-edge)

RMP 83, 705 (2011)

Biggest breakthrough – Spin excitations in RIXS –

Single magnon in La₂CuO₄

- A: elastic
- D: optical phonon
- B: single magnon ←
- C: multiple magnon

L.Braicovich et al., PRL 104, 077002 (2010).

Electronic excitations observed by RIXS

Dean et al., Nat. Mater. 12, 1019 (2013)

Wakimoto et al., Phys. Rev. B 87, 104511 (2013)

Recent topics (presented in this talk)

Layered high-T_c cuprates
 spin excitations + charge excitations
 共同研究者:藤田全基,佐々木隆了, M. Minola, G. Dellea, C. Mazzoli,
 K. Kummer, G. Ghiringhelli, L. Braicovich,遠山貴己,
 山田和芳,吉田雅洋,黒岡雅仁,清水裕友,水木純一郎
 佐藤研太朗,宮脇淳,原田慈久, J. Pelliciari, Y. Huang, T. Schmitt

2. Layered iridates (pseudo-)spin excitations coupled to charge 共同研究者: I. Jarrige, 吉田雅洋, 水木純一郎, 松本章代, 加藤晃彦, 高山知弘, 高木英典

3. Layered iridate

exciton in **spin-orbit** entangled states (d-d excitation)

4. 1-dimensional cuprate **spin-orbital** separation (d-d excitation)

Recent topics (presented in this talk)

1. Layered high-T_c cuprates **spin** excitations + **charge** excitations

2. Layered iridates (pseudo-)**spin** excitations coupled to **charge**

3. Layered iridate exciton in **spin-orbit** entangled states (d-d excitation)

4. 1-dimensional cuprate **spin-orbital** separation (d-d excitation)

Characteristics of copper oxides

A suitable system for the study of spin and charge excitations in correlated electron systems

Spin and charge excitations in cuprates

T. Tohyama et al., Phys. Rev. Lett. 74, 980 (1995)

Electronic excitations at sub-eV

important for comprehensive understanding of electron dynamics in copper oxides charge dynamics (~ t), spin dynamics (~ J)

- evolution of spin dynamics upon carrier doping
- charge dynamics of doped carrier

Spin excitations (Cu L₃-edge RIXS)

shift to higher energy

Recent theory

3-site terms

To explain high-energy shift upon electron doping, 3-site term is needed in the t-J model.

Summary of spin excitations in cuprates

Charge excitations in e-doped NCCO (Cu K-edge RIXS)

K. Ishii et al., PRL 94, 207003 (2005)

Charge excitations in h-doped LSCO (Cu K-edge RIXS)

circle: LSCO x=0.30 (hole dope) square: NCCO x=0.15 (electron dope)

Momentum dependence is similar to electron-doped NCCO.

S. Wakimoto & KI et al., PRB 87, 104511 (2013)

Dynamical charge structure factor $N(q,\omega)$ in a theory

20 site t-t'-t"-J cluster

Tohyama, J. Electron Spectrosc. Relat. Phenom., to be published

Charge excitations of e-doped NCCO (Cu L3-edge RIXS)

Charge excitations in e-doped NCCO

NCCO (Cu L3-edge)

h=0.02

ANOIIII00000

1

0.5

Energy [eV]

0

-0.5

Doping dependence

increase of intensity

Dispersion of charge excitations

low-**q**

Dynamical charge correlation function $N(\mathbf{q}, \omega)$ Calculation t-t'-t"-J model

Cu L₃-edge RIXS

Dean et al., Nat. Mater. **12**, 1019 (2013)

Summary of charge excitations in cuprates

Momentum

EELS studies of hole-doped cuprates

Bi₂Sr₂CaCu₂O₈

 $Ca_{1.9}Na_{0.1}CuO_2Cl_2$

q|[100](1/Å)

- plasmon
- q² dispersion
- ~ 1 eV gap at Γ-point

N. Nücker et al., PRB 39, 12379 (1989) N. Nücker et al., PRB 44, 7155 (1991)

- plasmon (?)
- q dependent intensity
- ~ 1 eV gap at Γ-point

R. Schuster et al., PRB 86, 245112 (2012)

Recent topics (presented in this talk)

1. Layered high-T_c cuprates **spin** excitations + **charge** excitations

 Layered iridates (pseudo-)spin excitations coupled to charge

3. Layered iridate exciton in **spin-orbit** entangled states (d-d excitation)

4. 1-dimensional cuprate **spin-orbital** separation (d-d excitation)

Magnetic excitations in Sr₂IrO₄

BL11XU at SPring-8

Momentum

Dispersive magnetic excitation (magnon of $J_{eff} = 1/2$)

J-J'-J" Heisenberg model J = 60 meV, J' = -20 meV, J" = 15 meV

Temperature dependence

Sr₂IrO₄ E_i=11214eV T=20K

Comparison with charge dynamics

Recent topics (presented in this talk)

1. Layered high-T_c cuprates **spin** excitations + **charge** excitations

2. Layered iridates (pseudo-)spin excitations coupled to charge

3. Layered iridate exciton in **spin-orbit** entangled states (d-d excitation)

4. 1-dimensional cuprate **spin-orbital** separation (d-d excitation)

dd excitations in Sr₂IrO₄

BL11XU at SPring-8

Dispersive dd excitations

Excitonic quasiparticle in Sr₂IrO₄

Spin-orbital level scheme

Hole vs Exciton propagation in AF background

Dispersive excitonic mode

J. Kim et al., Nat. Commun. 5, 4453 (2014)

Recent topics (presented in this talk)

1. Layered high-T_c cuprates **spin** excitations + **charge** excitations

2. Layered iridates (pseudo-)spin excitations coupled to charge

3. Layered iridate exciton in **spin-orbit** entangled states (d-d excitation)

4. 1-dimensional cuprate **spin-orbital** separation (d-d excitation)

Spin-orbital separation in 1D cuprate Sr₂CuO₃

J. Schlappa et al., Nature **485**, 82-85 (2012)

まとめ

- ここ十数年で、
 - ●エネルギー分解能が顕著に向上し、大きな発展を遂げた。
 - ●磁気励起の観測というブレークスルーもあり、強相関電子系での利用研究が 進んだ。

<u>スピン励起</u>

中性子非弾性散乱による研究の蓄積があり、相補的手法として発展している。 電荷励起・軌道励起

いくつかの例が観測され、実験的検証が可能となった。

- 方向の一つとして、高エネルギー分解能化の流れは続くであろう。
 (高フラックス、高指向性のX線が不可欠)
 次の5-10年は、数十meV領域(~k_BT)の測定へ
 物性を説明する理論モデルは、Q-ω空間での励起状態まで含めた検証が可能になる
 新しい励起 ⇒ 新しい物理へ
- 励起の同定に有用な、**偏光の積極的な利用**も進める必要がある。