多自由度相関系の動的構造物性

Department of Physics Tohoku University

Sumio Ishihara

J. Nasu (Tokyo Inst. Tech.)

T. Watanabe (Chiba Inst. Tech.), M. Naka (Tohoku)

PF研究会「次世代放射光光源を用いた構造物性研究への期待」 27-28 July 2015 KEK Tsukuba

Orbital excitation "Orbiton"

revisited

Orbiton

Orbital wave (orbiton)

Collective excitation in orbital ordered state 3d transition-metal compounds Quadrupole order in 4f electron systems

M. Cyrot and C. Lyon-Caen, J. Phys. (Paris) 36, 253 (1975)

S. Ishihara, J. Inoue, S. Maekawa Phys. Rev. B 55, 8280 ('97).

FIG. 2. Orbiton and phonon dispersion, neglecting dynamical effects due to the *e-p* coupling; (a) without *e-p* coupling *g* and without bare phonon dispersion, (b) $g/\omega_0 - 1/2$, no bare phonon dispersion, and (c) $g/\omega_0 - 1/2$, finite bare phonon dispersion. The points of high symmetry in the Brillouin zone correspond to those of Ref. [13].

al + Dynamical:

Effects of JT coupling mics (Dynamical JT,

FIG. 2. Optical conductivity of LaMnO₃. The points are the lowest Lorentzian oscillator fit by Jung *et al.* [16] to their data. The dashed curve is a T - 0 sum of convolved Lorentzians centered at the vibrational replicas shown as vertical bars; the solid curves are T - 0 (lower) and T - 300 K (upper) sums of convolved Gaussians, also shown in the inset on a logarithmic scale. Tick marks in the inset denote decades.

Vibronic excitation (cooperative JT problem)

Orbital – Lattice coupling

$$H_{J} = -2J_{1}\sum_{\langle ij \rangle} \left(\frac{3}{4} + \vec{S}_{i} \cdot \vec{S}_{j}\right) \left(\frac{1}{4} - \tau_{i}^{l}\tau_{j}^{l}\right)$$
Exchange interaction
$$-2J_{2}\sum_{\langle ij \rangle} \left(\frac{1}{4} - \vec{S}_{i} \cdot \vec{S}_{j}\right) \left(\frac{3}{4} + \tau_{i}^{l}\tau_{j}^{l} + \tau_{i}^{l} + \tau_{j}^{l}\right)$$
$$\vec{S}_{i} \cdot \vec{S}_{j} \rightarrow \langle \vec{S}_{i} \cdot \vec{S}_{j} \rangle$$
$$H_{\rm JT} = -\frac{\hbar^{2}}{2M} \left(\frac{\partial^{2}}{\partial Q_{u}^{2}} + \frac{\partial^{2}}{\partial Q_{v}^{2}}\right) + \frac{M\omega^{2}}{2}(Q_{u}^{2} + Q_{v}^{2}) + A(\sigma^{x}Q_{v} - \sigma^{z}Q_{u})$$
$$\text{Kinetic Lattice potential JT interaction}$$

Dynamical Jahn-Teller effect

Generalized spin wave app

1) MF approximation for the exchange term

$$T_i^z = \langle T^z \rangle + \delta T_i^z$$
$$\mathcal{H} = -\sum_{\langle ij \rangle} (J_z \delta T_i^z \delta T_j^z + J_x T_i^x T_j^x) + \sum_i \mathcal{H}_i^{\text{MF}}.$$

2) Diagonalization for on-site Hamiltonian

Local eigen state : $\{|\Phi_n\rangle\}$ up to $\mathcal{N}(\geq n)$ Local eigen energy : $\{E_n\}$

3) Boson operator for Local excitations

4) Inter-site interaction written by boson

$$T_{i}^{x} = \sum_{m,n=0}^{N} (T^{x})_{mn} X_{i}^{mn}, \quad \delta T_{i}^{z} = \sum_{m,n=0}^{N} (\delta T^{z})_{mn} X_{i}^{mn},$$
$$X_{i}^{mn} = a_{in}^{\dagger} a_{im}, \qquad X_{i}^{n0} = a_{in}^{\dagger} \left(M - \sum_{m=1}^{N} a_{im}^{\dagger} a_{im} \right)^{1/2}$$

N. Papanicolaou, Nucl. Phys. B 305, 367 (1988) R. Shiina, H. Shiba, et al. JPSJ. 72, 1216 (2003) H. Kusunose and Y. Kuramoto

JPSJ 70, 3076 (2001)

$$\mathcal{H} = \sum_{\boldsymbol{q}} \sum_{m,n}^{(\text{even})} \left[(\Delta E_n \delta_{mn} - z \gamma_{\boldsymbol{q}} J_z v_m^z v_n^z) a_{\boldsymbol{q}m}^{\dagger} a_{\boldsymbol{q}n} - \frac{z \gamma_{\boldsymbol{q}} J_z}{2} v_m^z v_n^z (a_{\boldsymbol{q}m}^{\dagger} a_{-\boldsymbol{q}n}^{\dagger} + h.c) \right] \\ - \frac{z \gamma_{\boldsymbol{q}} J_z}{2} v_m^z v_n^z (a_{\boldsymbol{q}m}^{\dagger} a_{-\boldsymbol{q}n}^{\dagger} + h.c) \right] + \sum_{\boldsymbol{q}} \sum_{m,n}^{(\text{odd})} \left[(\Delta E_n \delta_{mn} - z \gamma_{\boldsymbol{q}} J_x v_m^x v_n^x) a_{\boldsymbol{q}n}^{\dagger} \right]$$

Comparison with exact diagonalization

Valid from weak to strong JT coupling regimes

Orbital spectra

Phonon spectra

bare phonon

Vibronic collective mode

Vibronic collective mode

J. Nasu & SI, Phys. Rev. B 88, 205110 (2013) (Editor's suggestion paper)

Excitonic Insulator and Collective mode

Perovskite cobaltites

 $R_{1-x}A_xCoO_3$ (R:La A: Ca, Sr, Ba)

as another target

Spin state degree of freedom

$\mathsf{Pr}_{0.5}\mathsf{Ca}_{0.5}\mathsf{CoO}_3$

J. Kuneš and P. Augustinský PRB 89, 115134 (2014) J. Kuneš and P. Augustinský PRB 90, 235112 (2014)

Strong coupling approaches

C. D. Batista, PRL 89, 166403 (2002) L. Balents, PRB 62 2346 (2000)

Perovskite cobaltites

Two band Hubbard model

$$\begin{aligned} \mathcal{H}_{0} &= \Delta \sum_{i} n_{ia} \end{aligned} \\ &+ U \sum_{i\gamma} n_{i\gamma\uparrow} n_{i\gamma\downarrow} + U' \sum_{i} n_{ia} n_{ib} \qquad \text{Intra/inter band Coulomb} \\ &+ J \sum_{i\sigma\sigma'} c^{\dagger}_{ia\sigma} c^{\dagger}_{ib\sigma'} c_{ia\sigma'} c_{ib\sigma} + I \sum_{i\gamma=\gamma'} c^{\dagger}_{i\gamma\uparrow} c^{\dagger}_{i\gamma\downarrow} c_{i\gamma'\downarrow} c_{i$$

$$\mathcal{H}_{t} = -\sum_{\langle ij \rangle \gamma \sigma} t_{\gamma} \left(c^{\dagger}_{i\gamma\sigma} c_{j\gamma\sigma} + H.c. \right)$$

Transfer

Summary

Orbiton

Orbiton under dynamical JT coupling

Low-lying collective vibronic mode + multiphonon

Electronic & lattice contributions by X-ray & Neutron, respectively

J. Nasu & SI, Phys. Rev. B 88, 205110 (2013) (Editor's suggestion paper)

Excitonic Insulator

Two excitonic insulating phases LS-EI(LS)-LS/HS-EI(HS)-HS Breaking Z2 symmetry in EI phase (In no-pair hopping, breaking U(1))