PF研究会、KEK、27 Jul. 2015

次世代放射光光源を用いた 構造物性研究への期待

構造物性UG代表 有馬孝尚 理化学研究所 創発物性科学研究センター 東京大学 物質系専攻

観測の高度化

▶より小さなものを
 ▶隠れたものを
 ▶より速い動きを
 ▶より正確に
 ▶高い選択性で

観測物質科学の発展

次世代素子 環境問題 エネルギー問題

次世代光源への期待

・小さな発光点・高い平行性・高い可干渉性

Polarization Control (Hard X-ray)

H. Ohsumi et al., Physica B, 345, 258 (2004)

Magnetic Structure of Sr₂IrO₄

Ir L₃ Edge

Polarization Dependence of Magnetic Scattering

X線分光の高分解能化

光電子分光

電子の占有状態

共鳴非弾性散乱分光 電子の励起状態

室温~25 meV 1 THz~4 meV

LASER励起角度分解光電子分光

KFe₂As₂ $\Delta E \sim 0.07 \text{ meV}$ $|\Delta|$ (meV) A 2.5 В 2.0 inner (xz/yz)500 sample ' middle $(xz/yz+z^2)$ Δ (µeV) Δ sample 2 outer $(x^2 - v^2)$ sample 3 2.0 $\Delta(\phi) = |\Delta_0[1 + A\cos(4\phi) + B\cos(8\phi)]|$ 1.5 - inner 10 ∆ (meV) Fermi Surface Angle (deg.) 1.0 С middle (RPA) middle 0.1 0.5 0.05 -90 -45 45 90 0 K-0 Fermi Surface Angle (deg.) -0.05 Kx,

kx nodal points

K. Okazaki, S. Shin et al., Science (2012)

共鳴非弾性散乱で観る電子励起

L. Braicovich et al., Phys. Rev. Lett. (2009)

S(ω, q, r) 7次元空間

非周期系の構造物性

ドメイン構造

複合材料

非周期系の構造研究

どういう情報が必要か?

〇階層別の構造情報

小角散乱
・顕微/イメージング

円偏光微小ビームの利用

磁気ドメイン

S. Tardif et al., Phys. Rev. Lett. (2015)

コヒーレントX線の利用

コヒーレント回折

S. Eisebitt et al., Nature (2004)

500 nm

Interest in Domain Walls

1. Dynamics

Interest in Domain Walls

2. Unique Response

Spatial Modulation in Order Parameter

What is Needed

Real-space Imaging of Ferroic Domains

Advances in Microscopy Techniques

パルス幅

Movie of Excitations

Time-resolved Measurement

H. Ichikawa, S. Adachi, S. Koshihara et al. Nature Materials (2011).

例2:電気二重層トランジスタ

M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, Y. Tokura, Nature **487**, 459 (2012).

トランジスタ動作下での構造研究

・電界誘起相転移は薄膜全体で発現 ・温度、X線、圧力誘起の金属相と異なる新しい相

D. Okuyama, M. Nakano et al., Appl. Phys. Lett. (2014)

次世代光源への期待

・小さな発光点・高い平行性・高い可干渉性