遷移金属酸化物の時間分解X線回折

H. Wadati^{1,2}, P. Beaud³, U. Staub³, T. Tsuyama^{1,2},
N. Pontius⁴, C. Schussler-Langeheine⁴,
M. Nakamura⁵, S. Chakraverty⁵, H. Y. Hwang^{5,6},
M. Kawasaki^{1,5}, and Y. Tokura^{1,5}

¹QPEC, Univ. of Tokyo, ²ISSP Univ. of Tokyo, ³PSI, ⁴HZB, ⁵RIKEN CEMS, ⁶Stanford Univ.

Time-resolved x-ray diffraction

Charge ordering in Pr_{0.5}Ca_{0.5}MnO₃ thin films^{3/23}

 $(LaAIO_3)_{0.3}$ - $(SrAI_{0.5}Ta_{0.5}O_3)_{0.7}$

D. Okuyama *et al.*, APL **95**, 152502 (2009).

Thin films fabricated by pulsed laser deposition.

growth conditions

Samples

$$T_{sub} = 850 \text{ °C}, P_{O_2} = 1.5 \text{ mTorr}$$

Measurements

- LCLS (Linac Coherent Light Source)
- XPP (X-ray pump-probe)
- 150 K (Liquid N₂)
- $hv \sim 6.5 \text{ keV}$ (near Mn Kedge)

Experimental setup

Ordering peaks

From structure (2 1/2 0) peak Mn⁴⁺ displacement

From orbital ordering (0 5/2 0) peak

From charge ordering (0 3 0) peak

S. B.Wilkins *et al.*, Phys. Rev. Lett. **91**, 167205 (2003).

La_{0.42}Ca_{0.58}MnO₃/MgO(001) film

(5 5/2 2) peak(mainly from structure)7.15 keV (off) at SLS

P. Beaud et al., PRL 103, 177502 (2009).

 $I(t)/I(0) = 1 - Ae^{-t/\tau_1}(1 - e^{-t/\tau_2}\cos 2\pi\nu t)$

v = 1.98 THz (0.5 ps)~ 70 cm⁻¹ (phonon: A_g mode)

La_{0.42}Ca_{0.58}MnO₃/MgO(001) film

(5 5/2 2) peak(mainly from structure)7.15 keV (off) at SLS

(5 5/2 2) peak

7.09 keV (off) at LCLS

P. Beaud et al., PRL 103, 177502 (2009).

Pr_{0.5}Ca_{0.5}MnO₃/LSAT(011) (exp.)

(2 1/2 0) peak(mainly from structure)6.53 keV (off)

(0 5/2 0) peak (orbital ordering) 6.553 keV (on)

Oscillations due to coherent phonon (~ 2.5 THz). Frequency doubling at higher fluence.

$Pr_{0.5}Ca_{0.5}MnO_{3}/LSAT(011)$ (theory)

10/23

Summary 1

Coherent phonon of ~ 2.5 THz: Motion of Pr/Ca Frequency doubling at higher fluence.

P. Beaud, <u>H. Wadati et al.</u>, Nature Materials 13, 923 (2014).

東大物性研BL07LSUでの取り組み

軟X線回折チャンバー

東大物性研ビームライン BL07LSUで今年2月から稼働