内殻素励起によるX線ラマン散乱を用いた 電子構造の研究

手塚 泰久 弘前大学大学院理工学研究科

Collaborator

- H. Osawa (JASRI/SPring-8)
 S. Nozawa (Photon Factory, KEK)
 N. Nakajima (Hiroshima Univ.)
 H. Sato (Hiroshima Univ.)
 T. Iwazumi Osaka Pref. Univ.)
- H. Im (*Hirosaki Univ.*)
 T. Watanabe (*Hirosaki Univ.*)
 Y. Ishiwata (*Saga Univ.*)
 K. Ozawa (*Tokyo Inst. of Tech.*)
 H. Sakama (*Sophia Univ.*)

Experimental

ESCARGOT (X-ray spectrometer) @KEK-PF BL7C, BL15B (bending)

Interaction between electron and radiation

$$H_{int} = \frac{e^2}{2mc^2}A^2 - \frac{e}{mc}(\mathbf{pA})$$

p: momentum of electron

A: vector potential

Kramers-Heisenberg formula (~pA) << RIXS (RXRS) >>

$$\frac{d^2\sigma}{d\Omega_{k_2}d(\hbar\omega)} \sim \sum_j \left| \sum_i \frac{\langle j|T_2|i\rangle\langle i|T_1|g\rangle}{E_g + \hbar\Omega - E_i + i\Gamma_i} \right|^2 \delta(E_g + \hbar\Omega - E_j - \hbar\omega)$$

Dynamical structure factor ($\sim A^2$)

<< XRS >>

$$\frac{d^2\sigma}{d\Omega_{\mathbf{k}_2}d(\hbar\omega)} \sim \frac{\omega}{\Omega} \left(\frac{e^2}{mc^2}\right)^2 (\mathbf{e}_1 \cdot \mathbf{e}_2) S(\mathbf{k}_1 - \mathbf{k}_2, \Omega - \omega)$$

S: Dynamical structure factor

Sample

Detector (PSPC)

position data

PC

Sample

- TiO₂ (rutile) : powder, single crystal (100)
- Ti₂O₃: powder
- BaTiO₃ (BTO): powder, single crystal (100)

XRS Spectra of TiO₂

Y. Tezuka, et al., J. Phys. Soc. Jpn. 83, 014707 (2014).

Ferroelectric BaTiO₃ (BTO) / Anatase (TiO₂)

(arb.unit)

Intensity

$CaCu_{3}Ti_{4}O_{12}$ (CCTO) CuO

300

 (P_5')

Ti K resonance

Summary

Other results

- Ti_2O_3
 - Much lifetime broadening
- Anatase TiO₂
 - Photocatalyst
 - More 3*d* electrons than rutile
 - Peak shift by UV-radiation
- Nano-particle Anatase TiO₂
 - Size dependence
 - Much 3*d*-electrons at large (loose \rightarrow fasten)
 - Dope effect
 - Electron is doped in t_{2g} state
- Steel (Fe)
 - Electronic state change by heat and pressure.

Feature Plans of XRS / XES

X-ray Raman Scattering

- Photon-in/photon-out
 - Bulk sensitive
 - Unnecessary conductivity \rightarrow Insulator
 - Stable in changed environment \rightarrow Excited state
 - Time dependence
- Coherent Process
 - Selection rule ~ strict
 - Nonlinear Process
- Joint DOS (Elementary Excitation)
 - Core-excitation \rightarrow Partial DOS of unoccupied state
 - Mapping (Elements, Excitations)
 - k-dependence

Need High Brilliance !!

X-ray Emission Spectroscopy

• Partial DOS of occupied state