最近の研究から

高分子のせん断流動中結晶成長観察

趙 雲峰,松葉 豪 山形大学 大学院理工学研究科

Observation of Polymer Crystallization during Shear Flow

Yunfeng ZHAO, Go MATSUBA Graduate School of Science and Engineering, Yamagata University

Abstract

結晶性高分子のせん断流道中の配向構造形成を,高速度カメラを備えた偏光顕微鏡観察と小角・広角X線散乱測定で追跡した。せん断印加中のミクロンスケールの配向構造の成長・緩和プロセスを評価し,せん断方向に配向した結晶ラメラ 構造の存在を示した。さらに,せん断流動中では結晶化度の増大が観測されたが,せん断停止後は結晶化度はわずかに減少した。配向した分子鎖の緩和によるエントロピーの効果によるものと考察した。

1. はじめに

高分子は、金属やセラミックスと並んで三大材料と呼ば れており,我々の生活に欠かすことができない材料である。 高分子材料の用途は自動車のバンパーを代表とする様々な 部材や衣服, 食品用容器, パイプなど多岐にわたっている。 広く用いられている高分子材料であるが、大別すると結晶 化することのできる「結晶性高分子」と結晶化しない「非 晶性高分子」がある。結晶性高分子として、ポリエチレン、 ポリプロピレン, PET ボトル容器として知られているポリ エチレンテレフタレートがある。一方、非晶性高分子とし てはポリスチレン, ABS 樹脂, アクリル, CD や DVD な どに利用されている透明なポリカーボネートなどがある。 実際の製品として用いられる高分子はおおよそ6割が結晶 性高分子(2013年。日本プラスチック工業連盟)である。 それは, 高分子の結晶の存在が, 金属やセラミックスに比 べてずっと軽量な高分子材料に強度や剛性を与え,「軽く て」「丈夫」な材料が作製できるからである。産業の観点 から見た場合、材料を軽くすることは、省資源、省エネル ギー、さらには省コストにつながる。また現在の燃料・資 源価格の高騰という状況や震災以降のさらなる省エネルギ ーが叫ばれている状況では、材料の軽量化は重要な課題で あると言える。

実際の高分子の利用においては、ブロー成形や押出成形, 圧縮成形などの手法を用いている。すなわち,溶融させた 高分子を冷却させて応力をかけながら固化させることで, 自由自在な形状に成形加工し,実際の製品としている。そ の時,高分子には急激な温度変化とせん断などの応力(外 場)がかかっており,その最中に高分子の結晶は成長する と考えられる。そのため,成形加工中の結晶性高分子の制 御方法の確立は非常に大きなテーマである。我々のグルー

プでは, 高分子の冷却中, 外場中での結晶成長プロセスの 解明を研究テーマの一つとしており、外場中での高分子の 結晶化において観測される繊維構造の一つである「シシケ バブ構造」に着目している。シシケバブ構造は高分子の延 伸鎖晶からなる「シシ構造」と、そのシシ構造の周りに存 在する「ケバブ構造」からなり [1], 高強度・高弾性率材 料の開発には欠かすことができない。そこで、シシケバブ 構造形成を放射光X線や中性子線、顕微鏡などを用いて明 らかにしている。当該記事については 2007 年の PF News の最近の研究からに詳述した [2]。そこでは、射出後の金 型内部の構造形成に近いモデルでの結晶化プロセスについ て議論するため、せん断印加後の結晶成長プロセスを小角 X線散乱測定から評価した。その結果、高分子量成分がせ ん断流動結晶化プロセスの中で大きな役割を果たしてお り、せん断流動によって伸びた鎖が配向構造(シシケバブ 構造)形成プロセスを誘発させ、さらには高分子の結晶核 生成を促進させることを示した。

だが、実際に成形加工や高分子の構造制御により大きな 役割を果たしているのは、せん断印加中の構造形成である。 せん断印加中の高分子鎖の構造変化については、科学的な 側面だけではなく、産業応用の面からも研究開発の要請は 非常に高い。そこで、本稿では、最近の本分野の進歩とし て、我々のグループで開発に成功した高速度カメラを備え る顕微鏡と放射光実験施設(PF)における小角・広角同 時X線散乱測定(SAXS, WAXS)を利用したミクロンス ケールからナノスケールに至る、広い空間スケールでのせ ん断印加中の構造形成について詳述する。

2. 実験

試料として、プライムポリマー社から提供された市販品 グレードのアイソタクチックポリプロピレン(iPP)を用 いた。数平均分子量は 7.2 万,重量平均分子量は 30 万で ある。融点は DSC 測定により、160℃と導出された。また、 溶融高分子の緩和時間を決定するために、Small Amplitude Oscillatory Shear (極小せん断ひずみ)測定を融点近傍の 148℃にて行い、この試料においては最大緩和時間(レプ テーション時間)が 86 秒であり、セグメントの緩和時間 である Rouse 時間が 2 秒であることを示した。

せん断流動の強さやせん断印加温度はリンカム社製 の CSS-450 装置を用いて制御した。高速度カメラを備え た 偏 光 顕 微 鏡 (High Speed Polarized Optical Microscopy: HSPOM) 測定 [3] は、キーエンス社製の高速度顕微鏡 VW-5000 を改造した装置を用いた (Fig. 1)。HSPOM 装置

Figure 1 Photo of our new developed microsope, High Speed Polarized Optical Microscope (HSPOM).

を用いると,最大1秒あたり,24000枚の画像を取得可能 である。さらに、その場小角・広角同時X線散乱測定は、 高エネルギー加速器研究機構の物質構造科学研究所内の放 射光科学研究施設(PF)のビームラインBL-6Aを用いた。 カメラ長は2.2 mであり、入射X線の波長は1.5 Åで、ビ ームのサイズは0.2 mm四方であった。ディテクタには、 小角側では浜松ホトニクス社製のC7330型CCDカメラを、 広角側ではフラット型のCCDカメラである浜松ホトニク ス社製のC9728DKを用いてそれぞれ二次元散乱像を記録 した。

せん断結晶化実験における温度およびせん断条件につい ては以下の通りである。まず,試料の履歴を消去するた めに,iPPサンプルを210℃にて5分間融解させた。融点 以下の148℃まで冷却させて,急冷による温度むら,試料 むらを除去するために3分間静置した。なお,この温度・ 時間条件では,結晶成長は観測されない。その後,せん 断速度100 s⁻¹のせん断を20秒間印加した。HSPOM 測定, SAXS および WAXS 測定はせん断印加中,および直後の 構造変化を評価した。

3. 結果と考察

3-1. HSPOM 観察

Fig. 2にせん断印加中の HSPOM 像の時間発展を示す。 まず,せん断印加後ごく初期(8秒以下)ではせん断を印 加しているにもかかわらず,ほとんど構造が観測されてい ない。せん断印加後9秒後から,せん断方向に並んだ配向 構造が出現し始める。出現した配向構造は,せん断時間の 増大にともなって,徐々に増大した。一方,せん断印加終 了後(20秒以降)については,2つの異なったプロセスが 観察される。まず,Aに示す部分では,せん断によって成 長した配向構造が融解するプロセスを観察することに成功

Figure 2 Time-resolved micrographs of iPP melts during shearing. The arrow indicates the flow direction.

Figure 3 Shear rate and temperature dependence of micron-scaled oriented structure.

した。すなわちAについては分子鎖のみが配向した配向 メルト構造であり、結晶が存在しないため、せん断停止に よって融解している。一方, Bに示す部分では, 逆にせん 断中においては、配向構造は見られなかったがせん断印加 停止後、しばらくして徐々に配向構造が成長していた。さ らに詳細な評価のため、種々の温度およびせん断速度条件 における,配向構造の長さと直径を導出した(Fig. 3)。配 向構造の直径は、すべてのせん断条件で約15ミクロン程 度であったのに対し、長さはせん断速度が高く、せん断温 度が低いほど長くなる傾向があった。これは、結晶化が進 みやすい過冷却度の大きい低温条件および高せん断速度の 条件において、より長い配向構造ができやすくなるものと 考えられる。このようにせん断中に配向構造が形成し、せ ん断印加停止後に成長もしくは融解プロセスが起こってい ることが示された。そこで、この配向構造についてナノス ケールの観点から精密に解析を行うため、小角・広角X線 散乱測定を行った。

3-2.小角X線散乱および広角X線散乱観察

Fig. 4 に SAXS プロファイルの時間発展を示す。せん断 のごく初期は、高分子のメルト状態に起因する等方的な散 乱のみが観測される。HSPOM 観察でも、構造が観測され ておらず、単純に溶融した高分子がせん断によって流動し ているプロセスであると考えられる。さらに、せん断を続 けると顕微鏡観察で配向が観察されるのと同じタイミング でせん断に垂直方向にストリーク状の散乱が出現すること がわかった。垂直方向の散乱は、ミクロンスケールの配向 構造に起因していると考えられる。さらにせん断を続ける と徐々にせん断に対して平行方向に散乱プロファイルが成 長した。ここで観測される、せん断に平行方向のプロファ イルは、せん断方向に並び積み重なった「結晶ラメラ構 造」によるものである。すなわち、せん断によって、結晶 ラメラ構造の成長が促進されて、配向構造が増しているも のと考えられる。せん断停止後は、このプロファイルは消 失することなくそのまません断方向に配向した「ラメラ構 造」、いわゆる「ケバブ構造」による散乱が観測される。 そこで、せん断印加中および印加終了直後の結晶構造につ いて議論するために、Fig.5に示すとおり、広角X線散乱 測定について解析を行った。その結果、顕微鏡で配向が観 察され始めたあとの12秒後から, iPPのα晶に由来する (110), (040), (130),(111/041) による反射が観察された。せん 断を印加しない場合、結晶核は成長しない条件であること から、せん断中においても結晶成長促進効果が存在する。 さらに、精密に解析を行うと、せん断印加中において、α 晶だけではなく、非常に弱いながらもβ晶由来の(300) およびγ晶由来の(117)反射も観測された。β晶およびγ 晶は一軸および二軸延伸時に観測されることが知られてい る。せん断によって、高分子鎖が引き伸ばされて、そこか ら結晶成長が始まっているため、延伸でみられるような配 向状態が存在していることが示唆される。さらに、系内の

Figure 4 2D SAXS images before, during, and after shearing.

Figure 5 WAXS profiles during and after shearing.

Figure 6 Time dependence of the area of crystal diffraction in WAXS.

結晶化度 Xc を,結晶部分の WAXS プロファイルの面積 *I*。 と全体の WAXS プロファイルの面積 *I*_{all} を用いて,

(1)

$$X_e = I_e / I_d$$

で、定義する。Fig. 6 に結晶化度の時間依存性を示す。10 秒後から徐々に増大し始め、20 秒間せん断印加させた時 には、8.9% となった。すなわち、顕微鏡で観測される配 向構造には結晶が含まれていることがわかった。しかし、 せん断停止後は,結晶化度が 5.6% と急激に減少し,その 後に再び増大していることがわかる。そこで,この現象に ついて考察を行った。まず,ある温度 T における Gibbs 自 由エネルギーの変化 ΔG とエンタルピーの変化 ΔH,エン トロピーの変化 ΔS を用いて以下のように定義される。

$$\Delta G = \Delta H - T \Delta S \tag{2}$$

また,高分子の結晶の厚みは過冷却度に依存している [4]。 無限大の厚みをもつ結晶を仮定し,その融点を平衡融点 T_m^0 とすると,平衡融点では Gibbs 自由エネルギーの変化 ΔG は0であるので,

$$T_m^0 = \Delta H / \Delta S \tag{3}$$

で,定義される。せん断速度 γの場合における,エンタル ピーおよびエントロピーの変化量を δH および δS とする と,

$$T_m^0(\dot{\gamma}) = (\Delta H - \delta H(\dot{\gamma})) / (\Delta S - \delta S(\dot{\gamma}))$$
(4)

となる。せん断印加時にはエントロピーの変化量は非常に 小さいが ($\delta H(\dot{\gamma})=0$), せん断により高分子鎖は配向さ れるために $\delta S(\dot{\gamma}) > 0$ となる。よって,(4)式からせん断 印加中の平衡融点 $T_m^0(\dot{\gamma})$ は大きくなる。すなわち、せん 断印加中は過冷却度が大きくなり,結晶成長が促進される。 しかし、逆にせん断の印加を停止した場合、過冷却度は小 さくなるため、結晶の融解が観測され、結果的に結晶化度 が減少したものと考えている。ただし、系内にすでに配向 結晶が存在しているため、配向結晶を結晶核とした結晶成 長が改めて開始され、せん断停止後も配向した構造が成長 できる。それらを模式図としてまとめたものを Fig. 7 に示 す。顕微鏡で配向構造が観察された部分は主には結晶ラメ ラ構造よりなっており、せん断の印加を停止した後も配向 構造はそのまま生き残り成長する。一方、配向が弱い部分 に関しては、配向メルトであることが示唆される。また、 今回は配向構造が非常に弱いと考え,ビーム強度が強く(大 きく)かつ径の大きなビームを利用した。仮にマイクロビ ームを用いたとすると、配向結晶の部分では Fig. 7 のよう なラメラ構造に起因した散乱が観測されるが、配向メルト 構造については、弱い配向もしくはシグナルが弱く何も観 測されないと考えられる。将来のビームタイムにてこの事 象を確認したいと考えている。

Figure 7 Schematic drawing of crystal lamellar in oriented structure.

4. まとめ

結晶性高分子のせん断流道中の配向構造形成プロセス を,HSPOM 観察および小角・広角 X線散乱測定によって 追跡した。ミクロンスケールの配向構造はせん断印加後し ばらくしてから成長が開始され、徐々に数が増えていくこ とがわかった。せん断停止後は、一部の配向構造は緩和し 融解するものの、ある程度は生き残り、新たな配向構造の 成長も観測された。一方,小角 X線散乱測定からは,せん 断方向に配向した結晶ラメラ構造が存在していることがわ かった。また、広角X線散乱より、せん断流動中の結晶化 度の増大、および停止後の減少が観測された。これらはせ ん断によって配向した分子鎖の存在による、エントロピー の変化によって説明ができることがわかった。

5. 最後に

本研究は、2013年9月に山形大学大学院にて博士(工学) の学位を取得した趙雲峰君の仕事をまとめたものです。ま た, BL-6A の実験については, 課題番号 2012G525 により 実施しています。

引用文献

- [1] A. J. Pennings and A. M. Kiel. Colloid. Z. Z. Polym., 205, 160-162 (1965).
- [2] 松葉豪,西田幸次,金谷利治, PF News, 25, 14-17 (2007).
- [3] Y. Zhao, G. Matsuba, K. Hayasaka, H. Ito, Macromolecules, 46(1), 172 (2013).
- [4] 奥居徳昌,構造 II: 高分子の結晶化 (高分子基礎科学 One Point 8), 共立出版, 2012.

著者紹介

趙 雲峰 Yunfeng ZHAO

山形大学大学院理工学研究科 〒 992-8510 山形県米沢市城南 4-3-16 TEL: 0238-26-3053 FAX: 0238-26-3053 略歷:2013年山形大学大学院理工学研 究科博士課程修了。博士(工学)。

松葉 豪 Go MATSUBA

山形大学大学院理工学研究科 准教授 〒 992-8510 山形県米沢市城南 4-3-16 TEL: 0238-26-3053 FAX: 0238-26-3053

e-mail:gmatsuba@yz.yamagata-u.ac.jp

略歴:2001年京都大学博士後期課程修了,2001年アメリ 力標準技術研究所博士研究員, 2004年京都大学化学研究 所助手(助教), 2009年山形大学大学院理工学研究科准教 授,博士(工学)。

最近の研究:最近は高分子の構造解析を中心にしたいろん な解析と 3D プリンタ。

趣味:米沢駅内に山形大学工学部が中心になり「駅ファ ブ」を立ち上げました。毎週土曜日にオープンしていま すので、米沢に来られた時にはぜひお立ち寄りください。 http://www.ekifab.com/