放射光 X 線が明らかにする古代ガラスの製法 ~古代エジプトおよびメソポタミアの銅赤ガラスを例に~

阿部善也 東京理科大学理学部第一部 応用化学科

Production Technique of Ancient Glass Revealed by Synchrotron Radiation X-rays ~The Case of Copper-Red Glass from Ancient Egypt and Mesopotamia~

Yoshinari ABE Department of Applied Chemistry, Tokyo University of Science

Abstract

銅によるガラスの赤色着色技術を「銅赤(どうあか)」と呼ばれ、紀元前15世紀頃の古代エジプトおよびメソポタミア で発明された。本研究ではこれら2地域の銅赤ガラス製品に対して、マイクロビームを含む放射光X線を利用したX線吸 収端近傍構造分析および蛍光X線分析を非破壊で適用し、両地域における製法の違いを化学的に解明したとともに、銅赤 の技術的発祥についても考察した。

1. はじめに

「古代オリエント」は現在のエジプトや地中海沿岸,西 アジアを指す言葉で、古代エジプトやメソポタミア(現在 のイラクの一部)が栄えた文明発祥の地である。今日の 我々の生活を支える材料や技術の中には、古代オリエント で生み出されたものが多くあり、ガラスもその一つであ る。ガラスの生産技術は紀元前3千年紀末¹⁾のメソポタ ミアで発明されたと考えられ [1], 紀元前 15 世紀になると 古代エジプトに技術が伝わった [2]。間もなくこれら2地 域で大規模なガラス生産が行われるようになり, 古代オリ エント全土に両地域のガラス製品が流通した。当時のガラ ス製品は高価かつ希少だったラピス・ラズリなどの宝石の 代用品として位置付けられ, 無色透明なものは存在せず, 鮮やかな着色が施されていた。また、主成分のシリカ源と してケイ砂または石英礫と、融剤として Na に富む植物を 燃やした灰(植物灰)を混合し、高温で熔融することで得 られたソーダ石灰ガラスであった。古代のガラス職人たち はここに様々な金属や鉱物、あるいは合成顔料を添加する ことで、色とりどりのガラスを生み出していた。古代ガ ラスに使用された主要な着色剤を Table 1 に示した。古代 に発明されたガラスの着色技術の多くは、数千年の時を経 て現在のガラス工芸でも利用されている。本稿では、古代 オリエントで利用された数多あるガラス着色技術のうち 唯一の「還元焼成による発色技術」であった銅(Cu)に よるガラスの赤色着色技術、いわゆる「銅赤(どうあか)」

 Table 1 Typical colorants used for ancient glass production.

Color	Colorant
Violet	Mn^{3+}
Blue	Co^{2+}, Cu^{2+}
Green	$Cr^{3+}, Fe^{2+}, Cu^{2+}$
Yellow	Fe ³⁺ , Pb ₂ Sb ₂ O ₇ (opaque), PbSnO ₃ (opaque)
Red	Metallic Cu nanoparticle, Cu2O (opaque)
White	Ca ₂ Sb ₂ O ₇ (opaque), SnO ₂ (opaque)
Black	Mn^{3+} , Fe^{2+}

に着目する。銅赤のガラス製品は紀元前15世紀頃の古代 エジプトとメソポタミアにおいてほぼ同時に登場している が、どちらが先であったかは明らかではない。銅赤ガラス 生産に必要な安定した高温焼成と還元技術は、古代オリエ ント史を理解する上で重要な「製鉄」とも深く関連するが、 紀元前15世紀の時点では古代エジプトとメソポタミアに おいて製鉄技術は確立されていなかった。十分な還元焼成 技術がない時代に、古代人はどのようにして銅赤ガラスを 生み出していたのだろうか。

ここで, 銅赤の発色メカニズムについて説明しておこう。 ガラス生産において, Cu は青色着色剤と赤色着色剤の2 種類の用途で利用される。一般的な酸化焼成条件では, ガ ラス中の Cu は酸化数 +2 の Cu²⁺ イオンとして存在し, 共 存する元素に応じて青色~緑色を呈する。一方, ガラス が Cu によって赤色を呈するのは, Cu が 0 価の金属 Cu ナ ノ粒子もしくは 1 価の酸化物である赤銅鉱 (cuprite: Cu₂O) として存在する場合, すなわちガラスを還元雰囲気下で焼 成した場合である。金属 Cu ナノ粒子による着色は, ガラ

¹⁾「千年紀」とは,西暦を 1000 年単位で区切ったもの。例えば紀 元前 3 千年紀であれば,紀元前 3000 年〜紀元前 2001 年,あるい は紀元前 30 世紀〜紀元前 21 世紀を指す。

ス中で金属 Cuナノ粒子が 10~100 nm オーダーのコロイ ドを形成した際に、表面プラズモン効果により発色する。 これに対して Cu₂O による着色は、10~100 µm の Cu₂O の赤色結晶が透明ガラス中に散在することで、Cu₂O 自体 の色がガラスに与えられる。これらの他にも、Cu はガラ ス中で酸化数 +1 の Cu⁺ イオンとしても存在するが、この 場合には可視光領域に吸収を持たないため、発色に関与し ない。2種類の赤色発色メカニズムを比較したとき、Cu₂O 着色よりも金属 Cu ナノ粒子着色の方が強い還元状態が必 要となるため、紀元前の銅赤ガラスは Cu₂O による着色が ほとんどであり、金属 Cuナノ粒子着色が安定して実現可 能になったのは紀元後からである。また、金属 Cuナノ粒 子着色では(粒径や濃度にもよるが)ガラスの持つ透明性 を失うことなく赤色を付与できるのに対し、Cu₂O着色の 場合には必然的に不透明な赤色となる。なお、現代のガラ ス工芸で利用されている銅赤は金属 Cu ナノ粒子による着 色のみであり、Cu₂O 結晶による不透明な着色は古代特有 の技術である。このように、銅赤ガラスがどのようなメカ ニズムで発色しているのかについては、比較的詳細に解明 されている。しかしながら、古代オリエントにおいて銅赤 ガラスがどのような原料を用いて、どのような製法で作ら れていたのかほとんど解明されておらず、そもそもその技 術的発祥が古代エジプトとメソポタミアのどちらだったの かも判然としない。なお当時の製法に関連して、紀元前 14~12世紀に年代づけられるメソポタミア出土の粘土板 文書の中には、「銅赤ガラスのレシピ」と思われる記述が 残されているものがある [1]。いくつかの材料の配合比と 思われる記述があるが、各材料を指す語が何を意味するの か解読されていないため、当時の製法の再現には至ってい ない。

著者はX線分析を中心とした非破壊の機器分析技術を活 用し,古代のガラス製品の化学組成や化学状態を明らかに することで,原料や製法を考察する考古化学的な研究を展 開している。特に近年では,国内外の研究機関や博物館等 との文理融合型の共同研究として,古代オリエントの銅赤 ガラスに関連した研究に注力している。本稿はその最近の 成果に関する論文[3]と,関連する解説[4]の内容について, フォトンファクトリー(PF)を利用した成果を中心に再 編したものである。

2. 化学組成に基づく原料の推定

ガラスは高温で原料を焼成・熔融することで得られるた め、原料中に含まれていた元素がそのままガラス製品にも 混入する。すなわち、古代ガラスの化学組成は原料の種類 や採取地、あるいは製法を強く反映する。著者は国内装置 メーカと共同開発した蛍光X線分析(XRF)装置を国内外 の考古遺跡や研究施設へと持ち込み、収蔵された古代ガラ スをその場で非破壊分析して、化学組成に基づいて生産地 や製法を推定している。銅赤ガラスに関しても、エジプト のダハシュール北遺跡(サッカラ)およびアメンヘテプ III 世王墓(ルクソール)、イギリスの大英博物館(ロンドン) およびアシュモレアン博物館(オックスフォード),ある いは国内でも岡山市立オリエント美術館(岡山)や古代エ ジプト美術館(東京)を始めとした様々な施設において, これまで 200 点以上の分析を実施しており,時代や地域に よる銅赤ガラスの特徴の違いを明らかにしつつある。ここ では,著者がこれまでに実施してきた非破壊オンサイト XRF の結果のうち,銅赤ガラス生産の最初期にあたる前 2 千年紀に年代づけられる古代エジプトおよびメソポタミア の製品に着目して,両地域における化学組成の特徴と,そ こから推定される原料の違いについて説明しよう。

まず古代エジプト製品とメソポタミア製品に共通する 点として, どちらも素材はソーダ石灰ガラスであり, 数 wt%の Mg と K を含んでいた。これらの元素は、融剤と して植物灰を用いた場合に、植物中のミネラルがガラス製 品に混入したものであると理解される。すなわち、ベース となるガラス素材には共通点が見られる。しかしながら, 銅赤の発色に関連する元素には、化学組成に地域差が見 られた。まず銅赤の発色要因である Cu について見て見る と、どちらの地域の製品においても CuO 換算濃度²⁾とし て 10 wt% を超える高濃度の Cu を含有しているが、特に メソポタミア製品では 20 wt% を超えるものが多く見られ た。このことから、これら2地域では着色剤である Cuの 添加量に差があったものと考えられる。さらに、古代エジ プト製の銅赤ガラスには微量の Sn が含まれており、Cu 着 色剤として Cu と Sn の合金である青銅を用いたことを示 している。古代エジプトにおいて、ガラス生産と金属精錬 は密接な関係にあり [2], 青銅の精錬や製品化の工程で生 じた副産物をガラス生産で再利用していたものと推定され る。Sn はガラスの焼成過程で熱的還元剤として機能する ことが知られており、古代エジプトにおいては青銅由来で 混入した Sn が少なからず銅赤の発現に寄与していたもの と考えられる。一方、メソポタミアではガラス生産で青銅 を再利用していた痕跡は見られず、銅赤ガラス生産におい て Cu 着色剤をどのような形で添加していたのかは明らか ではない。ただし、メソポタミア製品は Sn の代わりに熱 的還元剤として機能する Sb を数 wt% 含み, さらに起分極 剤として金属イオンのガラス相中への溶解を助長する Pb も 10 wt% を超える高濃度で含有していた。メソポタミア より出土した粘土板文書に記された「銅赤ガラスのレシピ」 に関する解釈の一つに、PbとSbの化合物であるPb₂Sb₂O₇ が材料の一つとして添加されていたのではとする指摘があ る [1]。Table 1 に示したように、Pb,Sb,O7 は古代オリエン トのガラス生産で黄濁剤として利用されていた合成顔料で あり, 銅赤ガラスの着色にも応用されていた可能性は十分 に考えられる。

以上より,前2千年紀に年代づけられる古代エジプトと

²⁾ この値は XRF により検出された Cu が全て CuO の形で存在して いるとみなした場合の値である。CuO は最も一般的な酸化物とし て選定された化合物であり, XANES 等により求められた実際の 化学状態とは無関係である。

メソポタミアの銅赤ガラス製品の化学組成を比較すると、 Cu着色剤の添加量および形態,還元剤として機能する金 属元素の種類,さらに起分極剤としての Pb の有無など, 明確な地域差が存在したことが明らかとなった。

3. 放射光X線分析により銅赤ガラス製法の謎を解く

上述したオンサイトでの研究の他に、可搬型の装置で は得られない高次な情報,例えば ppm 以下で含まれる微 量元素の組成や、特定の元素に着目した詳細な化学状態, あるいは µm レベルの元素分布などを非破壊で分析するた め、著者は PFや大型放射光施設 SPring-8 において古代ガ ラスを始めとした考古遺物の放射光X線分析を実施してい る。特に PF においては、銅赤を含む古代のガラス製品や セラミック製品に添加された着色剤や顔料について, 非破 壊で化学的な特性化を行っている。着色剤として機能する 程度の元素添加量(>100 ppm)であれば、非破壊のX線 吸収微細構造 (XAFS) 解析であっても十分に化学状態を 議論することができる。また古代のガラス製品やセラミッ ク製品においては、着色に使用された顔料等が1µmを超 える大きさでガラス相中に残留している場合が多く,放射 光X線マイクロビームを用いることで1粒子レベルでの分 析も可能となる。そのため、様々な色の古代ガラスの中で も, 銅赤ガラスはきわめて早い段階から放射光X線分析の 対象であった [e.g. 5]。以降では、古代エジプト美術館の 協力の下、同館に所蔵された古代エジプト製およびメソポ タミア製の銅赤ガラス製品を借用して、PF において著者 が放射光X線分析を実施した結果について述べる [4]。

分析試料として用いたのは、古代エジプト美術館に所蔵 されたガラス製品5点(古代エジプト製3点、メソポタミ ア製2点)である。試料の写真をFig.1に示した。いずれ

Figure 1 Photographs of ancient Egyptian (E1, E2, and E3) and Mesopotamian (M1 and M2) copper-red glass artifacts analyzed at BL-9C and BL-4A in Photon Factory. All these artifacts were loaned from Ancient Egyptian Museum (Tokyo) for scientific study.

も紀元前 15 ~ 12 世紀に年代づけられ,古代オリエントに おける銅赤ガラス生産の最初期のものである。古代エジプ ト製の 1 点(E1)は多色のガラス容器片であり,他のエ ジプト製品 2 点(E2,E3)およびメソポタミア製品 2 点 (M1,M2)は単色のビーズである。これら 5 点全てに対 して,放射光実験に先立って可搬型 XRF 装置を用いた非 破壊の化学組成分析を行っており,その組成的特徴(Cu 添加量,SnとSbの含有量,Pbの有無など)は先述した とおりである。これら 5 点の古代銅赤ガラスを PF へと持 ち込み,BL-9Cにおいて Cu-K 吸収端X線吸収端近傍構造 (XANES)解析を,BL-4Aにおいて放射光X線マイクロビ ームを用いた μ-XRF イメージングおよび μ-XANES を非 破壊で実施した。

BL-9C における Cu-K 吸収端 XANES 解析では、放射光 X線をSi(111)二結晶モノクロメータによって単色化後, スリットによって縦横 1.0 mm に成形した。非破壊での分 析を行うため、XANES スペクトルは蛍光法で測定した。 先述したように、本研究の分析試料である古代銅赤ガラ ス製品は、CuO 換算濃度として 10 wt% を超える高濃度の Cuを含んでいるため、シリコンドリフト検出器 (SDD) などの高感度な半導体検出器を用いる必要はない。よって 検出器には Ni フィルターを装着したライトル検出器を用 い,充填ガスはArとした。参照試料として金属Cu,酸化 銅2種 (CuO, Cu₂O), Cu を添加して合成したソーダ石灰 ガラス2種(Cu²⁺ガラス,Cu⁺ガラス)の計5点について も分析を行い、これらのデータを参照スペクトルとして用 いて、古代銅赤ガラス製品の XANES スペクトルに対する パターンフィッティングを行った。なお、後述するマイク ロビームを用いた微小部のμ-XANES解析と区別するため, BL-9C で実施した XANES 解析を単に「XANES 解析」と 表記する。

BL-4Aにおける µ-XRF イメージングおよび Cu-K 吸収 端 μ-XANES 解析では, Si(111) 二結晶モノクロメータに よって単色化された放射光X線をK-Bミラー集光素子に よって縦横約5 µm に集光した。散乱角 90° となる位置に SDD を設置し、試料から発生した蛍光X線および散乱X 線を検出した。試料はハッチ外からコントロール可能な 電動 XY ステージ上に固定した。μ-XRF イメージングで は,励起エネルギーは13.5 keVとし,試料を動かすステ ップ幅は縦横共に5 µm に設定した。イメージング範囲は 縦横ともに 40 点, すなわち 200 µm × 200 µm の範囲であ る。イメージング対象元素について、この実験システムで は全測定点についてスペクトルデータが保存されるため, 検出された全てのピークについてイメージを得ることが 可能であるが, ここでは Cu-Ka (8.04 keV) および Pb-La (10.55 keV)³⁾を対象とした。Cu-K 吸収端 µ-XANES で は、SDDを用いた蛍光法によりスペクトルを測定した。

³⁾ Pb-La は As-Ka (10.54 keV) と重複するが,事前に Pb-L₃ 吸収 端 (13.04 keV) 前のエネルギーで XRF スペクトルを測定し,有 意な量の As が含まれていないことを確認した。

Figure 2 Comparison of normalized Cu K-edge XANES spectra of ancient Egyptian and Mesopotamian copper-red glass artifacts (E2 and M1) and reference materials obtained at BL-9C (solid lines: observe data, broken lines: pattern-fitting data).

参照試料については,前述した BL-9C における Cu-K 吸収 端 XANES 解析の際に用いたものと同様である。得られた μ-XANES スペクトルの解析手順についても,BL-9C にお ける XANES 解析と同様であるが,パターンフィッティン グは実施していない。

古代エジプト製およびメソポタミア製の銅赤ガラスにつ いて代表的な1点ずつ(E2, M1)と、参照試料5点につ いて得られた Cu-K 吸収端 XANES スペクトルを Fig. 2 に 示した。まず5種類の参照試料の XANES スペクトルを比 較してみると、1s-4p_π遷移と1s-4p_σ遷移ピーク位置および 形状から、Cuの価数を判断できる。Cuの価数が同じ1価 である Cu₂O と Cu⁺ ガラスは, これら 2 つのピークのみか らでは区別しづらいが、9010 eV 付近の吸収の有無により 区別することができる。しかし、古代銅赤ガラス中の Cu の化学状態は必ずしも単一ではないため、スペクトル形状 のみから Cu の化学状態を議論することは難しい。そこで 古代エジプト製品3点とメソポタミア製品2点のXANES スペクトルについて、パターンフィッティングにより化 学状態が異なる5種類のCuの割合を算出し、その結果 を Table 2 にまとめた。5 試料全てで金属状態の Cu よりも Cu₂Oの方が多く存在していたことから、今回分析した5 点の銅赤ガラス製品は生産地を問わず,主要な発色要因は Cu₂O 赤色結晶だと考えられる。また古代エジプト製の銅 赤ガラスにおいては,Cu₂O および金属 Cu 以外にも,可 視光領域に吸収を持たない無色の Cu⁺イオンが一定量存在 していた。これに対し,メソポタミア製の銅赤ガラス2点 では,80% 以上の Cu が Cu₂O の形で存在し,発色に関与 しない Cu⁺イオンは含まれていなかった。すなわち,メソ ポタミア製品の方が,より多くの Cu が着色要因(Cu₂O) として発色に寄与していることが明らかになった。

続いて、古代エジプト製品(E2)およびメソポタミア 製品(M1)について得られた μ-XRF イメージングの結果 を Fig. 3 にまとめて示した。古代エジプト製品,メソポタ ミア製品のそれぞれについて、Cu-Ka線および Pb-La線 の強度分布と、イメージングを行った範囲についてデジタ ル顕微鏡(KEYENCE VHX-2000)で撮影した高倍率の顕 微鏡写真を示してある。モノクロの図版ではわかりづらい ので、本誌のオンライン版か、元の論文[3]のカラー図版 を適宜参照いただきたい。顕微鏡写真において暗く見えて いる部分が透明なガラスマトリクスであり、その中に不透 明な赤色物質が散在している。白く見えている部分は、撮 影時に用いた白色 LED がこの赤色物質により反射された ものである。赤色物質の大きさを見ると、古代エジプト製 品(E2)では数~数十 µm オーダー, メソポタミア製品(M1) では数百 µm オーダーであり,明らかな差がある。ここに 示していない3点についても、古代エジプト製品とメソ ポタミア製品でそれぞれ同様の傾向が見られた。続いて Cu-Kα線の分布を顕微鏡写真と比較してみると、古代エ ジプト製品(E2)とメソポタミア製品(M1)のどちらに おいても、赤色物質の分布が Cu-Kα線の分布とよく対応 していることがわかった。そこで、Cu-Ka線が強く検出さ れた部分について、それぞれ Cu-K 吸収端 u-XANES 解析 を行い、得られたスペクトルを参照試料5点のデータと共 に Fig. 4 に示した。スペクトルの形状,特に 9010 eV 付近 の形状から、古代エジプト製品(E2)とメソポタミア製 品(M1)のどちらにおいても、Cu-Ka線が強く検出され た部分には Cu₂O が存在することが明らかになった。すな わち、顕微鏡写真で見られた赤色物質は Cu₂O であると同 定された。この結果は先述した Cu-K 吸収端 XANES 解析 の結果(Table 2)とよく一致している。また、特にメソポ タミア製品(M1)で顕著であるが、銅赤ガラス中で Cu₂O は特徴的な樹枝状結晶として存在していることがわかる。

Table 2 Results of a pattern-fitting analysis of Cu K-edge XANES spectra of copper red glass artifacts (fitting region: 8950–9100 eV).

Object		Develope				
	Cu ²⁺ in glass	Cu ⁺ in glass	CuO	Cu ₂ O	Cu metal	K value
E1	0	38.9	0	51.5	9.6	0.019
E2	0	16.8	0	66.1	17.1	0.026
E3	14.1	44.9	0	27.2	13.8	0.020
M1	9.3	0	3.9	81.5	5.3	0.015
M2	14.3	0	0	84.8	0.9	0.025

Figure 3 Distribution images of the XRF intensity of Cu-Kα and Pb-Lα of ancient Egyptian and Mesopotamian glass artifacts (E2 and M1) obtained by μ-XRF imaging analysis at BL-4A with micrographs of imaging region.

Figure 4 Comparison of normalized Cu K-edge μ-XANES spectra of Cu-concentrated part of ancient Egyptian and Mesopotamian copper-red glass artifacts (E2 and M1) and reference materials obtained at BL-4A using X-ray microbeam.

これは単に無色透明なガラス中に Cu₂O 粉末を添加・混合 することで着色したのではなく,一度ガラスマトリクス中 に過剰量の Cu を Cu²⁺ イオンまたは Cu⁺ イオンの形で溶解 させ,冷却過程で Cu₂O として析出させたためだと考えら れる。ここで,改めて μ-XRF イメージングの Cu-Kα 線の 分布を比較してみると,古代エジプト製品 (E2) では Cu は赤色物質部分だけでなく分析範囲全体から検出されてい ることがわかる。Cu-K 吸収端 XANES 解析の結果(Table 2) から,古代エジプト製の銅赤ガラスでは発色に関与しない Cu⁺ イオンが一定量存在することが示されたが,μ-XRF イ メージングで赤色物質と対応しない部分から検出された Cu は, この Cu⁺ イオンの状態で存在しているものと考え られる。一方,メソポタミア製品 (M1)の μ-XRF イメー ジング結果では,赤色物質がない部分の Cu-Kα 線強度が 明らかに低い。こちらも,メソポタミア製の銅赤ガラスで はガラスマトリクス中に溶存する Cu²⁺ イオンや Cu⁺ イオ ンが少ないとする Cu-K 吸収端 XANES 解析の結果 (Table 2)とよく対応している。さらに,μ-XRF イメージングで 得られた Pb-La 線の分布を見てみると,古代エジプト製 品 (E2)にはそもそも Pb が含まれていなかった (定量下 限以下)ため不鮮明だが,Pbを多く含む (PbO 換算濃度 として約 18 wt%)メソポタミア製品 (M1)では,明らか に Cu-Ka 線と逆の分布を示していた。つまり,Pb は Cu₂O 結晶中ではなく,透明ガラスマトリクス中に溶存している と考えられる。

以上の結果から, 紀元前2千年紀の古代エジプトとメソ ポタミアにおける銅赤ガラスの製法について考察してみ よう。まずどちらの地域においても、過剰量の Cu 着色剤 を無色のソーダ石灰ガラスに添加し、これを冷却過程で Cu₂O 結晶として析出させることで、銅赤ガラスを生み出 していた。ここで古代エジプトとメソポタミアでは、Cu 添加量に明らかな違いが見られるが、メソポタミアでは起 分極剤として Pb を添加することで、より多くの Cu 着色 剤を添加・溶解することが可能であった。当時のガラス生 産で使用された窯では炉内雰囲気を還元状態にすることが できないため、ガラスに添加した過剰量の Cu を Cu₂O と して析出させるためには、ガラス自体に還元剤を添加する 必要がある。古代エジプトでは Sn が、メソポタミアでは Sb が熱的還元剤として機能したと考えられるが、特に古 代エジプトにおいては Cu と Sn を別々に添加したのでは なく、青銅を再利用していた可能性が高い。メソポタミア

において Cu をどのような形で添加していたかは不明であ るが、Pb と Sb については当時ガラスの黄濁剤として使用 されていた合成顔料 Pb₂Sb₂O₇の形で加えられていた可能 性がある。析出した Cu₂O 結晶を見ると、古代エジプト製 品とメソポタミア製品では樹枝状結晶の大きさ、あるいは 成長状態に顕著な違いが見られ、またガラスマトリクス中 に溶存している Cu⁺ イオンの有無にも差が見られた。こう した Cu の分布の違いは、Cu 添加量の差に加えて、Pb の 有無に起因するものと考えられる。おそらくメソポタミア 製品では、高温中では起分極剤として機能した Pb が、冷 却過程ではガラスマトリクス中に溶存し、Cu をガラスマ トリクスに残りづらくさせ、Cu₂O の析出および樹枝状結 晶の成長を助長したものと考えられる。

以上のように,紀元前2千年紀の古代エジプトとメソポ タミアでは,銅赤ガラスの生産技術(原料の配合比や種類) に明らかな違いが見られ,それぞれ独自の製法を有してい た可能性が示された。古代オリエントにおける銅赤ガラス 生産のきわめて早い段階で,古代エジプトとメソポタミア 製法の地域差が見られたという点はきわめて興味深く,あ るいは銅赤という技術自体がこれら2地域で別々に,同時 多発的に生み出されたものなのかもしれない。

4. おわりに

今日でこそ考古遺物に対する理化学的な分析技術の応用 が一般化しているが、最初に考古遺物を化学の立場から研 究したのは、「分析化学の創設者」とも言われるドイツの 化学者, マルティン・ハインリヒ・クラプロート(1743 ~ 1817年)である [6]。彼が 1795年に発表した古代貨幣 の化学組成に関する報告が最初の研究例であり、その次に 分析試料として選ばれたのがガラス製品だった。ローマ時 代のガラス製モザイク3点について主要な元素の割合を求 めた研究であるが、そのうちの1点はCuに富む赤色ガラ ス、すなわち銅赤ガラスだった。もちろん、彼の研究は考 古学的な問題意識を持って行われたわけではなく、新元素 の発見報告が相次いでいた当時、自然界に存在する物質の 一つとして古代の貨幣やガラスに着目したに過ぎない。と はいえ,現在では当たり前のように行われている古代ガラ スの理化学的な研究の始まりに、 銅赤ガラスがあったこと は大変に興味深い。

銅赤は、古代に生み出された数あるガラス着色剤の中で 唯一還元を伴う技術であり、様々な進化を遂げながら、今 日に至るまで3千年以上に渡り利用されてきた。約200年 前にクラプロートによる最初の分析が行われてから、数多 くの研究者たちによって自然科学的な研究が積み重ねら れ、ようやく古代における実態が解明されつつある。その 研究の中で、放射光X線はきわめて重要な役割を果たして きた。銅赤ガラスに限らず、非破壊・非接触で非常に多く の情報を読み取ることが可能な放射光X線分析は、希少な 文化財を対象とした研究において、今後ますますの利用が 期待されると言えよう。

謝辞

本研究で分析した古代エジプトおよびメソポタミアの 銅赤ガラス製品は,全て古代エジプト美術館(東京都渋 谷区)からの借用品である。貴重な考古遺物の分析許可 をくださった同館館長の菊川匡博士に厚く御礼申し上げ る。本研究の放射光実験は放射光共同利用実験(課題番 号:2013G585,2016G112)として,高エネルギー加速器 研究機構フォトンファクトリー BL-4A ならびに BL-9C に おいて実施された。本研究は科学研究費補助金(若手研究: 18K12566)および平成 27 年度東京理科大学奨励研究助成 金の支援により実施された。

引用文献

- A. L. Oppenheim, R. H. Brill, D. Barag, A. Saldern, Glass and Glassmaking in Ancient Mesopotamia. Corning Museum of Glass, New York (1970).
- [2] P. T. Nicholson, J. Henderson: Glass. In: P. T. Nicholson and I. Shaw (eds) Ancient Egyptian Materials and Technology. Cambridge University Press, Cambridge, pp. 195-224 (2000).
- [3] 日髙遥香, 阿部善也, 菊川匡, 中井泉, 『分析化学』 67, 493 (2018).
- [4] 阿部善也,『考古学ジャーナル』720, 34 (2018).
- [5] I. Nakai, C. Numako, H. Hosono, K. Yamasaki, J. Am. Ceram. Soc., 82, 689 (1999).
- [6] 大沢真澄,『化学教育』20, 369 (1972). (原稿受付日:2019年6月24日)

著者紹介

- 阿部善也 Yoshinari ABE
- 東京理科大学 理学部第一部 応用化学科 嘱託特別講師
- 〒162-8601 東京都新宿区神楽坂1-3
- TEL: 03-5225-3165
- FAX: 03-5261-4631

e-mail: y.abe@rs.tus.ac.jp

略歷:2012年東京理科大学総合化学研究科博士課程修了, 2012年東京理科大学理学部第一部嘱託助教,2016年同嘱 託特別講師。博士(理学)。

最近の研究:可搬型分析装置の開発およびオンサイト分析 への応用,放射光X線技術の高度化と文化財・美術絵画へ の応用,福島第一原発事故由来の放射性物質の物理・化学 的性状解明など。

趣味:骨董蒐集。