入射器の現状

運転状況

電子陽電子入射器は、10月よりPFリング、PF-AR、 SuperKEKBメインリングのビーム蓄積状況に応じた同時 トップアップ運転を実施した。PF-ARは12月16日、その 他の3リングは12月27日にビーム入射を終了し、入射器 は冬期メンテナンスを実施している。メンテナンス終了後、 2月12日に立ち上げ、2月25日までビーム調整を行なっ て、2月25日からPFリング、3月3日よりPF-ARにビー ム入射を再開する。SuperKEKBは運転期間の連続が望ま しいこと、気温上昇による機器負荷増を考慮して2025年 第1期(春)の運転は行わず、第2期(秋)から立ち上げて、 できるだけ長期にわたりビーム入射を行う予定である。

次に 2024 年度第 2 期の運転で生じたトラブルについて 報告する。12 月 9 日以降,17 ユニットの直流四極電磁石 電源の通信異常が多発するようになった。シリアル通信制 御によるレガシータイプの電源であったため,Ethernet 制 御タイプ電源と交換して復旧した。また,61 ユニットの 直流四極電磁石電源に出力電圧不良の故障が生じたため, 代替電源と交換した。このユニットに組み込まれている電 磁石電源群は 1990 年代製で耐用年数を超えて経年劣化が 進んでいる。交換した電源自体も旧式であるため,来年度 に 61 ユニット電磁石電源全体の更新を行う。近年,老朽 化した電源の故障頻度が高く,ビーム運転に支障を来たす ようになっているため、3 年計画にて電源更新を実施して いる (PF ニュース 42-3 号参照)。

光源リング入射ビームや陽電子生成1次電子ビームを生 成している熱電子銃の電荷量変動が11月末より大きくな った。電荷量の変動はビームの軌道変動によって生じるこ とも多く,陽電子ビームは機械学習制御により,Aセクタ ーのパルスステアリング電磁石でビーム垂直方向の軌道を 常時自動調整して安定化制御がかけられているが,この電

加速器第五研究系研究主幹 惠郷博文 (2025 年 1 月 22 日付け)

荷量変動は軌道補正では改善できなかった。調査の結果, 熱電子銃の高圧ステーション内の温度変化が通常より大き く,カソードを熱しているヒーターの電圧出力に影響を与 えていることがわかった。熱電子銃を設置している室内は 精密空調で安定化されているため,高圧ステーション内の 排熱不良などが考えられる。そのため,冬期メンテナンス にて高圧ステーションの機器調査と改善を行う。

一方, 11 月 27 日から生じた SuperKEKB-HER 用低エミ ッタンスビームを生成する RF 電子銃の放電は、ビーム運 転最終日まで完全に回復することはなく、この電子銃に投 入する RF 電力を制限したシングルバンチ運転となった。 2バンチ運転回復のため、入力 RF パルス幅を調整しなが らコンディショニングを行い、安定性改善を図った。しか しながら,反射異常が生じた後の電子銃空洞の真空回復が 悪く,コンディショニングに時間がかかるため,HER ビ ーム運転時間の確保を優先して今期の2バンチ運転は断念 した。現在,放電を大幅に軽減させる新設計 RF 電子銃を 製作中である。製作完了後に入射器の RF テストスタンド で十分に大電力コンディショニングを行い、今年の夏期メ ンテナンスにてインストールする予定である。また, RF 電子銃カソードに照射している第1レーザーの5段目ア ンプが温度異常となって出力電荷量に変動を生じたため, アンプの交換作業を行なった。RF 電子銃の不調によりシ ングルバンチに制限した運転であったが、ビームのエミ ッタンスは 40 ~ 60 μm の範囲で調整され, HER ビーム伝 送路での入射調整により入射効率は比較的高く維持され, 60~80%であった。

ビーム研究

・放射光光源用電子ビーム

PFリング, PF-ARの両光源リングへの入射において,

図1 三重同期システムによる同期率の日時変化例。縦軸は 50 Hz 約5分間の同期出力比を表す。

図2 3~5セクターの RF 位相調整による AR-BT でのビームプ ロファイル改善例

ビームロスタイムによる入射停止率は1%未満となり、安 定に行われた。光源リングは入射器と単純な整数比にない ビーム加速周波数で運転されており、光源リングへの入射 タイミングを取るため, 三重同期モジュールを使用して いる。ビームのリング周回周波数,入射器基準 RF,商用 50 Hz を監視して同期が取れたタイミングでビーム出射ト リガーを発生する。潮汐の影響や気温などによって蓄積リ ングの周長が変化して RF 周波数が調整されるので、それ に応じて同期率も変わる(図1)。同期率が低下してくる とトリガー抜けが生じてくるが、通常、時間と共に同期率 は回復する。また、大きな変動が生じた場合は、PF リン グ側で稼働している入射位相自動フィードバックで修正さ れるため、ビーム入射への大きな障害にはなっていない。 また、PFリングへのビーム入射路(PF-BT)においても、 ビーム位置モニター(BPM)を使用したエネルギーフィ ードバックを行っている。しかしながら、PF-BT 内を通過 するビームには位置変動とエネルギー変動が混成されてい るため、エネルギーフィードバックのみでは安定性は不十 分である。その解消に向けて PF 加速器スタッフと協議し ており、新たな補正を行って更なる入射安定化を図る。

図3 3~5ビーム垂直方向位置と入射効率の比較

PF-AR においては、ビーム伝送路(AR-BT)でのビー ム形状が水平方向に広がり、AR-BT 終端での電荷量が変 動してビーム蓄積率が低下することがある。このような場 合は3~5セクターの RF 加速位相を調整する。これによ りネネルギー広がりが小さくなり、入射率も改善する(図 2)。

・低エミッタンス電子ビーム

入射器上流Aセクターに今夏新たに設置した垂直方向 高速パルスキッカー2台(FY_A2_2, FYA4_4)のビーム 運転コミッショニングを行なった。これまでの2バンチビ ーム運転において,第2バンチの垂直方向軌道がずれると 入射効率が低下することがわかっている(図3)。よって, 立ち上がり時間が2つのバンチ間隔(96.3 ns)より早い,

図4 垂直方向高速パルスキッカー (FY_A2_2) によるビーム調整状況。青点:第1バンチ垂直方向位置,赤:第2バンチ軌道垂直方向 位置,黒:設定タイミングディレイ。

図5 高速パルスキッカー (FY_58_4) による2バンチビームプ ロファイルの変化。左:高速キッカー OFF 時 右:高速キ ッカー ON 時。

高速キッカーを使用すれば, 第2バンチ軌道のみ修正する ことができる。図4に示すように今回のビーム適用試験で, 第2バンチを独立にキックできることを確認,キッカー動 作タイミングのディレイ値に応じて垂直方向軌道を精密に 制御できることがわかった。位置のジッターは十分小さ く, BPM 分解能 10 µm の範囲内であった。キッカー出力 ピーク時, 立ち上がり時, キッカー動作オフ時の3つの状 態においてジッターの有意差はなかった。これらの高速キ ッカーを自動調整することにより第2バンチの垂直方向ド リフトは解消された。また、高速キッカーによる第2バン チ独立軌道補正を活かして、HER-BT での第2バンチのエ ミッタンスが測定できるようになった。これまでは, 第1, 第2バンチの軌道が重なるため、エミッタンスの測定はで きなかった。しかし、入射器出口のFY 58 4 高速パルス キッカーにより第2バンチのみ垂直方向に大きく軌道差を 与えて、第1バンチとの軌道分離を行い、HER-BT 第2セ クションにあるビーム形状モニタを使用して両バンチのエ ミッタンスを測定した(図5)。測定したエミッタンスは, 第1バンチ:水平133 µm・垂直135 µm,第2バンチ:水 平 145 µm・垂直 91 µm であった。HER-BT 第1 セクショ ンでの両ビームのエミッタンスが垂直,水平ともに 40 µm 程度であることから、ビーム伝送途中でエミッタンスが大 きく悪化していることが改めて確認された。

・陽電子ビーム

2 バンチ運転時のエネルギー安定性を上げるため,エネ ルギー圧縮システム(ECS)の加速ユニット(KL_61)を 調整してビーム加速位相をゼロクロスに設定した。エネル ギー圧縮効果によりビーム幅が適正に狭くなっているのを 確認し,陽電子ビーム入射路(LER-BT)にて BPM で測 定したビーム形状がまとまるように調整した。これにより エネルギージッターが改善した。

3~5セクターにおいて陽電子ビームのエミッタンスが 悪化している原因を調査した。陽電子は1.1 GeV ダンピン グリング(DR)によって水平方向エミッタンスが70 µm 程度まで減衰されて入射器へ戻り,4 GeV まで加速され る。これまで入射器での測定では水平方向エミッタンスが 150 µm 程度に悪化した状態であった。調査により入射器 内で 10 cm 程度のディスパージョンが発生しており,エミ ッタンス増大に無視できない量であった。DR から入射器 へのビーム帰路(RTL)の収束電磁石を調整し,ディスパ ージョンを 2 cm まで小さくすることができた。これによ り,水平方向エミッタンスも110 µm まで下がった。ただし, 第 2 バンチに水平方向振動が残っており,これにより第 2 バンチのエミッタンスが LER-BT 内で悪化し,LER 入射 効率が悪くなっている。今後は,残るエミッタンス悪化原 因と水平振動の原因調査と解決を図っていく。

加速器第六研究系研究主幹 帯名 崇 (2025 年 1 月 20 日付け)

PF リングおよび PF-AR 第2 期運転の概要

PF リングは 10 月 7 日 (月), PF-AR は 10 月 17 日 (木) 9:00 に加速器立ち上げ運転を開始した。PF リングのユー ザーラン開始は 10 月 10 日 (木)の夕方, PF-AR は 10 月 21 日 (月)であり,両リングとも立ち上げ時間が実質 3 日ないし 4 日しかないというタイトなスケジュールであっ たが,軽微なトラブル対応などはあったものの予定通りユ ーザー運転に入ることが出来た。PF リングは 12 月 27 日 (金) 9:00, PF-AR は 12 月 16 日 (月) 9:00 に予定通り第 2 期の運転を終了し,冬期メンテナンス期間に入った。

PF リングの運転状況

図1に PF リングのビーム電流と寿命のグラフを示す。 ユーザーラン中にチャンネルクローズして再入射を行う 事象はこの期間に3回発生している。10月22日(火)は 4:55 に発生した進行方向ビーム不安定対処のため再入射を 実施した。11月1日(金)11:57 には電磁石の冷却水イン ターロックによりビームダンプ発生。リング内に入域して 調査を行った結果,流量には問題は無く外部インターロッ ク回路の故障と判明した(図2(a))。回路を予備品と交換 して復旧した。13:45 再入射を実施したところ,RF ステー ションのうち1台が立ち上がっていないことが判明。クラ イストロンの反射インターロックが発生しており,その原 因は後段にある高周波サーキュレーターの不具合であるこ とが疑われたため,緊急での交換作業を実施した。16:50 に作業終了して復旧した。図2(b)に作業の写真を示す。 同時に2つの大きな故障が偶然に起こるとは考えづらく,

図2 a) 故障した冷却水インターロック回路基板の一部および b) 高周波サーキュレーター交換作業の様子

電源インターロックでビームを停止したことがきっかけと なって大電力 RF 伝送系の不具合が顕在化した可能性もあ る。運転終了後の調査により,ダミーロード及びクライス トロンに不具合が生じていたことが判明した。今後も同様 のトラブルが起きないかどうかの検証を進める。このトラ ブルではユーザーランを6時間あまりにわたって停止する こととなったことをお詫びするとともに,多くの加速器六 系職員ならびに業務委託である三菱電機システムサービス

図1 PF リング 2024 年度第2期の運転状況

の協力無くしてはこのような短時間で復旧することは不可 能であった。あらためて感謝する。

11月19日(火)4:38には6極電磁石電源の冷却水イン ターロックのためビーム電流値が大きく減少した。設定変 更して復旧している。

11月28日(木)からはマルチバンチ運転から、単バン チ50 mA,マルチバンチ400 mAのハイブリッド運転に入 った。グラフからもビーム寿命が短くなっていることが分 かる。これにともなって、Linacからの入射頻度が上昇す るため、特にユーザー実験フロア・実験ハッチでの放射線 上昇に注意が必要である。放射線管理室によるサーベイに より、前回のユーザー運転に比べて放射線レベルが低下し ていることが判明した。これはビーム輸送ライン軌道の自 動調整や、Linacのエネルギーフィードバックの自動化、 入射タイミングの自動調整,蓄積リング側のチューンフィ ードバックなど、各種の入射安定化にむけた調整が効果を 上げたと考えている。ただし、まだ原因が不明な部分もあ るため、今後もモニター類の充実と調整の自動化を進めて いく。

マシンスタディとして,11月27日にPFの入射キッカ ー調整がユーザー運転に与える影響をビームライン担当者 とともに合同で実施した。今後もこのような部署を横断し た形で広くマシンスタディを行うことで,効率的なビーム 調整およびより安定したビーム供給につなげていく。

12月20日(金)のマシンスタディ期間にA1ステーションのRFが空洞反射インターロックでダウンしたため、 マシンスタディを途中でキャンセルして原因調査をおこなった。最も疑わしかったダミーロード交換や導波管を取り 外しての内部観測など,短時間に確認できる範囲での調査・ 対策を実施したが、残念ながら復帰には至らなかった。そ こで,これまでの空洞4台運転から3台運転に切り替えて, 総蓄積電流は450 mAから420 mAに下げた状態でユーザ ーランに入ることを決断した。ただし、ハイブリッド運転 期間中であるため、単バンチ 50 mA は減らさずにマルチ バンチ部分を 400 mA から 370 mA に減らす方針としてい る。運転停止後にハイパワー試験を実施し、今後の対策を 検討する。

PF-AR の運転状況

図 3 に PF-AR の運転状況を示す。横軸は PF リングでの 表示と同じ範囲としている。10 月 17 日(木)に 5 GeV で の立ち上げを開始した。今回の立ち上げ時には,蓄積電流 を従来の 50 mA から 55 mA に増やした運転を試みた。こ れは Higher Order Mode (HOM)吸収体の冷却系の整備や, 運転面では自動でのチューンフィードバックシステムの導 入などをうけての試みであり,当初は順調であったものの, 11 月 1 日(金)の夕方に AR 西側 2 番空洞最上流の HOM ケーブルの温度が上昇し続けている問題が発生したためユ ーザーランは元の 50mA に下げて運転する方針とした。冬 の停止期間に追加でのモニター系を整備してからマシンス タディを実施したうえで今後の方針を検討するが,これら の実験および計算の両面から検証をおこないマージンを確 認した上で今後の方針を決定する。

10月21日(月)に真空悪化現象が発生した。調査の結果, チタンゲッターポンプのフィードスルー部分からのスロー リークと判明したが,ユーザー運転直前でもあったことか ら当面の対処として真空封止材(バックシール)での対処 とし,運転終了後に交換など本格的な対処を実施する方針 とした。

12月5日(木)のマシンスタディでは、2バンチ蓄積す る運転モードを試験した。30 mA + 30 mA = 60 mA モード、 32.5 mA + 32.5 mA = 65 mA モードに成功し、65 mA モード は一時間程度安定した運転を実現、今後安定した運用が可 能と想定される。50 mA + 10 mA では不安定性が強く起き

図 3 PF-AR2024 年度第 2 期の運転状況。グラフ横軸は PF リングと同じく 10 月 6 日(日)~ 12 月 28 日(土)までの表示としている。

ることも判明した。PF-AR は単バンチ・大電荷での運転 が特徴である一方で,加速器のビーム物理現象の調査とい う面では色々と興味深いデータ取得が可能となるため,今 後も色々なパターンを含めスタディを継続する予定であ る。これはユーザー運転にすぐに適用するものではないが, ユーザーからの要請があれば対応できるように準備する。

12月16日(月)AR運転終了後に電磁石電源を立ち下 げる際,KEKBやPFの入射を止めてもらってからDCセ プタム電磁石電源をOFFすべきところ,一斉にOFFして しまい,KEKBとPFの運転に影響が出てしまった。同様 のミスを防ぐため,一斉操作パネルからは当該電源を除外 して,個別にOFFするように変更した。また,やはり運 転終了後に偏向電磁石2台にてブスバーの冷却用ホース接 続口金部より漏水が発生したほか,四極電磁石1台も同様 の漏水が発生した。これは加速器停止後に熱負荷が急激に 変わるなか,ゴムホースが経年劣化により硬化したことで 口金部に応力がかかったことが原因と考えられる。予備品 に交換することで対処した。今回の事象は約3年ぶりに発 生した。このようなトラブルは定期的に予防交換すること で避けることが可能であるが,予算・人員の制限により完 全には対応できていないのが現状である。

秋期運転期間において, AR 南棟で火災報知器の誤報(非 火災報)が頻発した。特に12月10日(火)の夜から11 日(水)の朝にかけて頻発したため,12月11日(水)の 15:00から調査と対処を行った結果,AR 南棟-KEKBコン トロール棟間の配線が絶縁不良となっていることが判明し たため、その線を切り離し、AR 南棟の信号をAR 西棟経 由で KEKB コントロール棟へ送るように繋ぎ変えた。当 面の間、AR 南棟で発報するとAR 西棟で発報したように 表示される。AR 南棟-KEKB コントロール棟間の配線は、 KEKB の運転が停止してから張り替える予定である。

冬期停止期間には, PF-AR では故障していた真空系冷 却水のチラー更新工事を実施する。工事期間は運転停止直 後の12月16日(月)~2月27日(木)とし,2月12日 (水)より試運転の予定している。これにより1台のみで 運転してきたチラーが2台態勢となるため,1台が故障し た際にAR 運転停止となる可能性があった状況が改善する ほか,5月から6月の運転において気温が上昇した際にも 温度制御範囲内での運転が可能となる予定である。

その他

11月20日にはQSTの小原脩平氏を招いて加速器セミ ナー「NanoTerasuの蓄積リングコミッショニング」を開 催した。小原氏はNanoTerasuにおいて蓄積リングのビー ム運転調整を牽引してきた方であり、コミッショニングで は主に横方向ビーム軌道調整に尽力され、蓄積ビーム電流 200mA での利用運転を実現された。セミナーではこれま で学会等で発表してきた内容はもちろん、現場担当者なら ではの苦労話なども含めた話を聞くことができた。また、 参加した KEK 職員からも情報提供・提案するなど、貴重 な情報交換の機会となった。

高校1,2年生を対象としたウィンターサイエンスキャ ンプが12月24日(火)-27日(金)の3泊4日で開催さ れた。全4コースのうち,加速器六系からは3名がCコ ースを担当しクルックス管と電磁石をテーマに実習をおこ なった。参加した学生からも好評であり,有意義な活動で あった。

人事異動

最後に人事異動について報告する。1月1日付で下崎義 人氏が教授に昇任した。引き続き光源第1グループ(電子 軌道・電磁石グループ)のメンバーとして PF リングおよ び PF-AR の電子軌道・ビームダイナミクスに関連する多 くの研究開発や, Linac からビーム輸送ラインまで含めて の入射調整の高度化に尽力いただくとともに, PF の喫緊 の課題でもある次期光源にむけた検討を強力に推進してい ただく。

2024年10月1日付けで田中窓香氏が准技師として加速 器第五研究系から六系に異動となり,真空グループの一員 として活動頂いている。おなじく10月1日からは総研大 の学生としてAftab Ahmad 氏 (パキスタン出身)が入学し, RF グループの一員として研究を開始している。

ビームライン建設関係

広波長域軟X線ビームライン(BL-12A)は、InSb分光 結晶の熱歪み問題や二つのビームの自動切り替え等の課題 がいくつか残るものの,ビーム調整作業をいったん完了し, 11月より共同利用を再開しました。今後共同利用と並行 して調整作業を進めるとともに、広波長域実験に向けた実 験システムの開発を進め、早期にフルスペックで利用でき るようにしたいと考えています。BL-11については、2024 年度第2期の11月7日までに白色を使ったR&Dを進め、 その後はいったん BL を閉鎖して建設作業を再開し, 2025 年冬の停止期間中に硬X線ブランチの光学系ハッチまで完 成させる予定です。2024年度第3期には、軟X線領域集 光白色ビームと光学系ハッチ内で硬X線領域非集光単色/ 白色ビームを利用できる R&D 実験スペースが利用できる ようになる予定で、高速高精度二結晶分光器 R&D 等がス タートします。また、建設予算の問題について、機構か らの支援が認められましたので、2025年夏に完成できる 見込みが立ちました。BL-11のR&D利用に向けた実験シ ステムの開発が進められている一方で, BL-11 での R&D 用の実験課題制度も PF-PAC での議論が進んでおり、2025 年3月の PF-PAC 全体会議で承認されれば 2025 年5月締 め切りの実験課題公募から申請が可能になります。PF-UA でも、昨秋の PF 研究会に引き続き、2025 年 1 月 20 日に BL-11利用に関する会議が開催され、様々な研究提案が議 論されていました。いよいよ BL-11 の利用が開始されます ので、ユーザーの皆様にもぜひ積極的に利用提案や R&D の提案をよろしくお願いいたします。

図1 1/23 時点の BL-11 建設作業の様子(完成した光学ハッチと ハッチ内に設置された R&D 用二結晶分光器が見える)。

放射光実験施設長 五十嵐教之 (2025年2月17日付け)

運転・共同利用関係

2024年度第3期の運転ですが,PFは2月25日から3 月24日まで,PF-ARは3月3日から3月24日までを予 定しています。PF,PF-ARともに3月13日,14日は,量 子ビームサイエンスフェスタのため,ユーザー利用を一時 停止する予定です。PFのハイブリッドモードは3月18日 から3月24日を予定しています。また,今回は期間が短 いので,PF-ARは6.5 GeVのみで運転します。第2期の後 半で,PFのRF#1の故障が発生し,最後はRF3台運転と させていただきましたが,冬の停止期間中に光源担当者が 調査を進め,クライストロン本体のパラメータを調整する ことで稼働できるようになり,第3期はRF4台運転で開 始する予定です。ただし,長期運用に耐えられるかどうか は様子見する必要があります。

2025 年度の運転についても議論が行われ,第1期の運 転予定が決定されました。第1期は,PFが5月7日から 7月7日,PF-ARが5月13日から6月30日まで運転され る予定となっています。第2期,第3期についても,光熱 水料確保の問題はありますが,PF3600時間,PF-AR2400 時間の利用運転に向けて機構側と相談を進めたいと考えて います。

PF-PAC の全体会議が1月24日に Web 会議方式で開催 され,課題の評点と採否が審議されました。開発研究多機 能ビームラインの運用制度や課題申請書の改訂,液体へリ ウムの状況と対応,新放射光源施設計画に関する協議等が 行われました。詳細については,本誌記事(p.36)をご参 照ください。

第42回 PF シンポジウムは,3月14日につくば国際会 議場(エポカルつくば)で開催されます。今回総合討論を 午前と午後の2回に分けて実施する予定で,午前は運営 への要望,午後は次期計画に関することについて,ユー ザーの皆さんと意見交換をしたいと思います。午後には PF-UA 総会や学生論文賞の受賞講演も予定されておりま すので,皆さんの積極的なご参加をお待ちしています。

放射光科学第一,第二研究系の現状

今回は二系の担当で、生体高分子の結晶構造解析におけ る位相決定法の変遷と現状について述べたいと思います。 位相決定は結晶化と並んで重要かつ困難な部分とされてき ました。技術の進歩やデータの蓄積により、以前ほどの困 難さはなくなりつつあるものの、測定データの質が位相決 定に大きく影響しますし、最終結果にも(間接的に)影響 を与えます。また、測定技術の進化に伴ってユーザーに求 められる位相決定に関する知識も変化しています。これら の変化は好ましいことではありますが、位相決定がうまく いかない場合にどのような対処をすべきかの知識が失われ つつあることは問題ですし、難しい解析を行う人材の不足 などの問題も生じそうです。今回は、位相決定に関するこ の数十年の変化を振り返るとともに、今後の行方に関して も触れたいと思います。

1. 重原子同型置換法から多波長異常散乱法へ

生体高分子の結晶構造解析は、(多重)重原子同型置換 法から始まりました [1]。この方法では、いわゆるネイテ ィブ結晶と重原子を導入した重原子同型置換体の結晶の回 折データを収集し、両者の回折強度の差から重原子の位置 を決定します。そして求めた重原子座標を元にして生体高 分子結晶の位相を計算します。重原子同型置換体は2つ以 上作る必要がありますので,かなりの試行錯誤が必要な方 法でした。現在では、この方法はほとんど使われていませ んが、位相決定に関する統計値の理解は生体高分子の結晶 構造解析の基礎ですし、多波長異常散乱法(MAD法)や 単波長異常散乱法(SAD法)など重原子同型置換法の後 に開発された手法を理解する上でも基本となるものです。 しかし現在、多くのユーザーがこれらの統計値やその背景 を意識することはなくなっています。これは、ソフトウェ アが高度化、自動化したことで、プログラムが一気に分子 モデルを出力するようになったためです。簡単な解析では これで十分なのですが、データの質が悪いなど難しい解析 の際には、統計値をきちんと評価してその結果を実験にフ ィードバックすることが必要になってきます。

生体高分子構造解析の初期段階では、ほとんどのタンパ ク質結晶構造が重原子同型置換法によって決定されました が、上で述べたように試行錯誤が必要な方法です。この欠 点を補ったのが、Hendrickson らによって開発された MAD 法です [2]。この方法では、セレノメチオニン置換タンパ ク質を準備する必要がありますが、それさえできれば高精 度のデータを用いて位相決定が可能なため、試行錯誤を大 幅に削減することができました。また世界的に放射光施設 が普及したことにより、多くの解析が MAD 法によって行 われるようになりました。当時はセレンの位置を特定する ために必要な高精度のデータを取得することは、それほど

放射光科学第二研究系研究主幹 千田俊哉 (2025 年 1 月 24 日付け)

容易ではありませんでしたので、測定法の工夫が色々と行 われました。MAD 法では, 複数の波長(通常は, 3-4 波長) で回折データを収集し、それを解析することで位相を決定 しますが、複数波長のデータ収集は結晶にダメージを与え るという点が問題でした。私の経験でも2波長目以降のデ ータは質が低く、位相決定にほとんど寄与しないことが多 かったように思います(まあ、データ収集の方法が悪いせ いでもありますが。。。。)。そのため、多波長で無理にデータ を収集するよりも、1波長で高精度のデータを収集する方 法へと変化していき, SAD 法が多く使われるようになっ ていきました。SAD 法では理論的には一位的に位相が決 まりませんので、その曖昧さを解決する必要があります。 このため, SAD 法の成功には density modification の発展が 重要でした。個人的には density modification の計算過程に おける figure of merit の見積もりが大きく改善したことも SAD 法の一般化に重要であったと思っています。

2. セレンから硫黄へ

異常分散効果を用いた位相決定法である MAD 法には, 主にセレノメチオニン中のセレン原子からの異常分散効果 が利用されてきましたが、測定技術の進歩に伴い硫黄を利 用する手法が発展してきました [3]。国内では故 渡邉信久 博士のグループが先進的な研究を行い、硫黄の異常分散効 果を利用した位相決定を現実的にするのに大きな役割を果 たしました [4]。現在では長波長X線を用いて硫黄の異常 分散効果を増強した回折強度測定を行うことが PF では可 能となっています。さらに、直接検出器の導入により高精 度なデータ収集を実現したこと、結晶成形装置 [5] を活用 したデータの質の向上も相まって硫黄の異常分散効果を用 いた構造決定(Native SAD法)はそれほど困難ではあり ません。結晶整形装置は長波長X線を使っての回折データ 測定の際に問題となる結晶の周囲の氷や結晶自身の余分な 部分を取り除くことが可能で、回折データの質の向上に役 立っています。硫黄を利用すれば、セレノメチオニンを用 いたタンパク質の調製を省略できますので、一般的な位相 決定法として利用することが可能です。ユーザーの皆様に は是非一度試してみてもらいたいと思います。その際には, ビームラインスタッフにご相談ください。このように実験 的に位相を求める方法では,回折強度測定技術の高度化に 伴い極めて小さな回折強度の差異を利用することができる ようになってきました。一方で、蓄積された座標データを 活用する分子置換法による構造決定の数が急速に増えて来 ており,実験的な位相決定を凌駕する状況になっています。

3. 分子置換法とアルファフォルド

分子置換法は、ターゲットとなる構造が既存の構造と類 似している場合に、その既知の構造を用いて位相を決定す る方法です。近年では Protein Data Bank (PDB) に多くの 座標データが蓄積されているため、ターゲットとしている 生体高分子の構造と類似の構造がすでに決定されているこ とが多く、分子置換法による構造決定が可能なケースが増 えています。さらに、高精度の構造予測 AI の登場により、 分子置換法においてこれらの予測構造を活用することが増 えてきました。AlphaFold [6] が登場した当初は、予測構造 が分子置換法に利用できるのかわかりませんでしたが、あ っという間に分子置換法で有効に活用できることが明らか になり利用が広がりました。このような状況になると、「そ もそも結晶構造を決定する必要があるのか」という疑問が 提起されることもあります。もちろん、実験的に得られた 構造は予測構造とは異なる情報を提供するため同じもので はありませんが、予測構造を利用して次の実験に進むケー スが増えているのも事実です。そのため、予測構造と実験 構造をどのように使い分けるかが重要な課題となっていま す。

分子置換法は実験による位相決定に比べ手軽ではありま すが,初期構造は当然最終的な構造とは異なっており,結 晶学的精密化の段階におけるモデルバイアスが問題となり ます。精密化の過程でこのモデルバイアスを除いていくわ けですが,分解能が低い場合にはなかなか難しい作業とな ります。近年では分子置換法と実験的な位相決定を組み合 わせることで,モデルバイアスを除くことも行われており [7],実際にこのような位相決定の方法をとることで,高 精度のモデルの構築が可能になり結晶学的な精密化も迅速 に終わらせることができます。

4. 位相決定の今後

今後の目標の一つとして, in situ 測定系(結晶化プレート上にある結晶をクライオループですくって凍らせることなく, 直接X線を照射して回折強度を測定する手法)での データの高精度化があります。In situの測定は BL-17A で 可能ですが, この測定で異常分散効果が高精度で測定でき るようになれば,結晶化スクリーニングの全自動ロボット を有する我々のセンターにおいては [8],生体高分子の結 晶構造解析の完全自動化も視野に入ってきます。In situの 測定に関しては,また機会を改めて報告したいと思います。

本稿で述べた通り重原子同型置換法に始まった生体高分 子の立体構造解析の位相決定ですが、今では硫黄を使った 位相決定と分子置換法を組み合わせての構造決定までが可 能になりました。これは測定装置の高度化、データ解析プ ログラムの発展、さらには理論的な進歩があってのことで す。これらが高度化するとともに、ユーザーが覚えなけれ ばいけないことは劇的に減っており、結晶構造解析の理論 を知らなくても構造解析ができるという一昔前からすれば 夢のような状況が達成されています。一方で構造解析が困 難な例は依然として存在しています。これらの困難な構造 解析を行うためには,専門知識や理論的裏付けが必要とな る場合が多いのですが,結晶学理論の理解が不要となるに つれ,一般ユーザーにとっては難しい解析にどのように対 処するかが課題となって来ているように思います。そのよ うな状況を考慮し,構造生物学研究センターでは解析相談 体制の拡充を目指していくべきなのではないかと考えてい ます。

- Blow, D. M. (2002). Outline of Crystallography for Biologists. Oxford University Press.
- [2] Hendrickson, W. A. (1991). Determination of macromolecular structures from anomalous diffraction of synchrotron radiation. *Science* 254 (5028), 51-58.
- [3] Cheng-Yang, J. W. Pflugrath, D. A. Courville, C. N. Stence, J. D. Ferrara (2003). Away from the edge: SAD phasing from the sulfur anomalous signal measured in-house with chromium radiation. *Acta Crystallogr.* D59, 1943-1957.
- [4] Kitago, Y., Watanabe, N., Tanaka, I. (2005). Structure determination of a novel protein by sulfur SAD using chromium radiation in combination with a new crystalmounting method. *Acta Crystallogr.* D61(11), 1013-1021.
- [5] Kawano, Y., Hikita, M., Matsugaki, N., Yamamoto, M., Senda, T. (2022). A crystal-processing machine using a deep-ultraviolet lase: application to long-wavelength native SAD experiments. *Acta Crystallogr.* F78, 88-95.
- [6] Jumper, J., *et al.* (2021). Highly accurate protein structure prediction with AlphaFold. *Nature* 59, 583-589.
- [7] Schuermann, J. P., Tanner, J. J. (2003). MRSAD: using anomalous dispersion from S atoms collected at Cu Kα wavelength in molecular-replacement structure determination. *Acta Crystallogr.* D59, 1731–1736.
- [8] Kato, R., Hiraki, M., Yamada, Y., Tanabe, M., Senda, T. (2021). A fully automated crystallization apparatus for small protein quantities. *Acta Crystallogr.* F77, 29-36.

人事異動

放射光科学第一,第二研究系に関連する人事異動を報告 します。

放射光科学第一研究系では、2025年1月1日付けで 低速陽電子実験施設で博士研究員をされていた Rezwan Ahmed 氏が特別助教として着任されました。

放射光科学第二研究系では、2024年12月1日付で研究 員として Simon Miller 氏が、また、同12月16日付けで研 究員として藤井裕己さんが着任されました。新しい環境で の活躍を祈念いたします。