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A Magnetic Weyl Fermion State in Non-Collinear Antiferromagnet 
Mn3Sn
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Weyl fermions have been recently observed as gapless topological excitations in a number of inversion-breaking semi-
metals. However, their realization in spontaneously time-reversal-symmetry-breaking phases so far has evaded experi-
mental detection. We present here an angle-resolved photoemission study of a noncollinear antiferromagnet Mn3Sn 
that exhibits a large anomalous Hall effect even at room temperature, and reveal a magnetic Weyl fermion state in the 
quasiparticle electronic structures by a detailed comparison with our density functional theory calculation and transport 
measurements. This discovery lays the foundation for a new field of science and technology involving the magnetic 
Weyl excitations of the novel magnet, “Weyl magnet.”

When either inversion-symmetry or time-reversal-
symmetry (TRS) is broken in solid states, two nonde-
generate energy bands can touch at pairs of isolated 
points in the momentum (k) space, giving rise to Weyl 
quasiparticles. The touching points, the so-called Weyl 
points, act as the monopoles of Berry curvature [1], 
leading to exotic bulk properties represented by a large 
anomalous Hall effect (AHE).

In the past three years, Weyl fermion states have 
been experimentally observed as gapless topological 
excitation in a number of inversion-breaking semimet-
als by angle-resolved photoemission spectroscopy 
(ARPES) [2]. However, their realization in spontaneous-
ly TRS-breaking phases, the so-called magnetic Weyl 
fermion, has remained hypothetical even though they 
have been theoretically predicted since the early stage 
of research [3].

In this work, by using synchrotron radiation ARPES, 
we observed the magnetic Weyl fermion state in a 
noncollinear antiferromagnet, Mn3Sn. This compound 
is formed by a stacking of kagome lattice and the geo-
metrical frustration leads to a 120° structure of Mn 
moments, whose symmetry allows a very small spin 
canting and thus vanishingly small magnetization [Fig. 
1(a)]. Remarkably, this is the first antiferromagnet (AFM) 
that exhibits a surprisingly large AHE below the Néel 
temperature of 430 K [4]. Such a large AHE in an AFM 
indicates a novel mechanism that induces a large Berry 
curvature [5, 6].

According to our density functional theory calcula-
tion, the TRS-breaking in Mn3Sn lifts the spin degen-
eracy and leads to band crossing at many k points, re-
sulting in various pairs of Weyl nodes. Among them, the 
most relevant for macroscopic measurements are found 
in the kz = 0 plane [Fig. 1(b)]. As an important conse-
quence of the magnetic symmetry, the electronic struc-
ture becomes orthorhombic. For the K–M–K line [arrows 
in Fig. 1(b)], the electron–hole band crossing generates 
the Weyl nodes. Therefore, the presence of the electron 

and hole bands around the M point is key for realizing 
magnetic Weyl fermions in Mn3Sn.

To search for these quasiparticle structures in three 
dimensions, we use synchrotron radiation ARPES. By 
changing h

 
 
 
 

                         ν , we observe clear kz dispersion along the 
H–K–H line with the quasiparticle peak developed near 
the Fermi level (EF) around K in Fig. 1(d). This clari-
fies that the incident h

 
 
 
 

                         ν  of 103 eV selectively detects 
the bulk band dispersion at kz = 0, where the Weyl 
nodes should exist near EF. Moreover, the contour 
of photoelectron intensity clarifies the location of the 
Fermi surfaces (FSs) on the kx–ky plane [Fig. 1(c)]. The 
experiment clearly captures the main elliptical-shaped 
contours centered at the M points, which have the same 
topology as the theoretical FSs (solid circle). This agree-
ment is significant as it is this electron band that creates 
the Weyl points at its intersection with the other hole 
band.

Figure 1(e) shows ARPES images along the K–M–
K high symmetry line obtained before (left) and after 
(right) dividing the intensities by the Fermi–Dirac dis-
tribution function to detect thermally populated bands 
above EF. We observe intensity anomalies particularly 
in the momentum distribution curve [Fig. 1(f)], aris-
ing from the crossings between the electron and hole 
bands. Comparing with theory, we note that the peak 
(red bar) at kx ≈ 0.3 Å−1 (−0.3 Å−1) between K and M 
points most likely comes from the dispersion in the im-
mediate vicinity of the Weyl point W+

1 (W
−

2) [Fig. 1(b)]. 
The peak (red bar) at kx ≈ 0.5 Å−1 (−0.5 Å−1) between the 
K and Γ2nd points corresponds to a large electron band, 
which crosses with another band and forms a Weyl 
point W−

1 (W
+

2) of different chirality. The single peak at 
kx ≈ 0.1 Å−1 [blue bar in Fig. 1(f)] is shifted from kx = 0 by 
the intensity gradient and would arise from the flat hole 
band at ~14 meV above EF. These results appear to be 
consistent with the theoretically predicted FSs and qua-
siparticle band structures.

Moreover, these results of the spectroscopic mea-
surement of the Weyl points are consistent with our 
transport measurements that show topological transport 
properties such as AHE and chiral anomaly [7]. These 
facts constitute evidence for magnetic Weyl fermions 
realized in Mn3Sn. Our experimental observations thus 
mark the start of basic research on magnetic Weyl fer-
mions in the novel magnet, “Weyl magnet,” which may 
well lead to novel electronic and spintronic technology 
for future applications.

Figure 1: (a) Magnetic texture in the kagome lattice. Arrows indicate Mn moments which have the local easy axis parallel to the in-plane 
direction along the x axis. (b) Distribution of the Weyl points in the bands on the kx–ky plane at kz = 0 near EF for the magnetic texture shown 
in (a), and Brillouin zone, showing the momentum sheet at kz = 0. (c) ARPES intensity at EF in the kx–ky plane using an energy h

 
 
 
 

                         ν  = 103 
eV and the calculated Fermi surface (purple curves). (d) Left: kz dispersion along the H–K–H high-symmetry line [black arrows in (b)], 
and Right: corresponding energy distribution curves (EDC). The ARPES maps are compared to the band calculations with strong band 

renormalization by a factor of five (solid lines). (e) ARPES E-kx cuts and the theoretical band structures along the K–M–K high symmetry line. (f) 
Corresponding momentum distribution curve (MDC) at E−EF ≈ 8 meV.
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