
67HIGHLIGHTS66 HIGHLIGHTS

 5   Instrumentation and Techniques          

Adaptive Design of Experiment for X-Ray Magnetic Circular 
Dichroism Spectroscopy by Machine Learning
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and K. Ono3 (1QST, 2The Inst. of Statistical Mathematics, 
3KEK-IMSS-PF, 4Hiroshima Univ.)

Machine learning (ML) is applied to X-ray magnetic circular dichroism (XMCD) spectroscopy to improve its efficiency. 
Adaptive design of an XMCD experiment by Gaussian process modeling successfully reduced the total energy points 
for obtaining an XMCD spectrum. An orbital magnetic moment is evaluated from an ML-predicted XMCD spectrum with 
the required accuracy. This methodology paves the way to improving the efficiency of various quantum beam measure-
ments.

Machine learning (ML) is a field of artificial intel-
ligence research. The primary objective of ML is to give 
computers the ability to learn like humans. Machine 
learning techniques can find patterns in data and are 
used for the classification, regression, and clustering of 
patterns. Recently, materials informatics, which is ma-
terials science using ML techniques, is attracting atten-
tion for the efficient discovery and development of novel 
materials. At the same time, metro-informatics, namely 
measurement techniques involving ML techniques, is 
necessary for accelerating materials informatics.

X-ray magnetic circular dichroism (XMCD) spectros-
copy is an important experimental technique for inves-
tigating magnetic materials such as permanent magnet 
materials, magnetic recording, and spintronic materials. 
The spins and orbital magnetic moments of a specific 
element can be evaluated by XMCD spectroscopy us-
ing magneto-optical sum rules. In this study, we applied 
an ML technique to an XMCD spectroscopy experiment 
to improve its efficiency [1].

Gaussian process (GP) modeling has been used in 
meteorology and geology for kriging. An XMCD spec-
trum is represented as a nonlinear function of X-ray en-
ergy. A GP model is a generalized linear model that can 
approximate such nonlinear spectral shapes by linear 

regression in feature space. The GP model predicts a 
spectrum by learning experimental data points, namely 
photon energy versus intensity. Moreover, both the 
expectation and variance of the prediction can be evalu-
ated.

We used an experimental XMCD spectrum to as-
sess the applicability of GP modeling. Sm M4,5 XMCD 
and XAS spectra of SmCo5, a typical permanent-mag-
net material, were measured using a scanning transmis-
sion X-ray microscope (STXM) at BL-13A [2]. Details of 
the STXM experiment are described in the literature [3].

Figure 1 shows a flowchart of the adaptive design 
of the experiment for XMCD spectroscopy. First, ini-
tial data points are sampled to obtain an experimental 
spectrum as the training data. Next, a spectrum is pre-
dicted by GP modeling fitted to the training data. Then, 
magnetic moments are evaluated from the predicted 
spectra. The experiment is stopped if the values of the 
magnetic moments satisfy the convergence criterion. 
Otherwise, new data points are sampled, and the spec-
trum is predicted again. We examined three methods of 
selecting new sampling data points: (1) sample the data 
point with maximum variance (max. var.) of the pre-
dicted spectrum, (2) random sampling, and (3) random 
sampling weighted with variance (weighted sampling).

Figure 2 shows the results of the adaptive design 
of the experiment for XMCD spectroscopy. Typical 
XMCD spectra predicted by the GP model are shown in 
Figs. 2(a)–(d). The initial 30 data points were extracted 
from the experimental XMCD spectrum. Variances in 
the predicted spectra (red solid curves) became signifi-
cant among the observed data points. By increasing 
the number of observed data points, the total variance 
of the predicted spectra decreased, and the spectral 
shape of the predicted spectrum became similar to 
that of the experimental (true) spectrum. Figure 2(e) 
shows the orbital magnetic moment mo evaluated from 
the predicted spectrum plotted as a function of the total 
number of data points with different sampling methods. 
True values for the magnetic moments and the ±5% 
errors are indicated by black solid and dashed lines, re-
spectively. The orbital magnetic moment converged to 
the true value at around 40 total data points with maxi-
mum variance sampling. Random sampling showed 
poor convergence to the true value even with 100 data 
points. Weighted sampling behaved halfway between 
maximum variance sampling and random sampling, and 
showed good convergence to the true value. Figure 2(f) 
shows the total number of data points for the various 
sampling methods to satisfy the convergence crite-
rion. All sampling methods satisfied the convergence 
criterion at around 50 points, but the random sampling 
showed convergence with a large error from the true 

value. Thus the maximum variance sampling with fast 
convergence and small error is the best way to select 
the energy point to be measured.

In conclusion, we demonstrated the adaptive design 
of an experiment for XMCD spectroscopy with GP mod-
eling. GP was found to predict the nonlinear spectral 
shapes of the XMCD spectrum successfully. Magnetic 
moments can be evaluated from the predicted spectra 
with the required level of accuracy. The present method 
reduces the total number of data points for an XMCD 
spectroscopy experiment. This method has potential ap-
plicability to various quantum beam measurements.

Figure 1: Flowchart of an adaptive design of an experiment for XMCD spectroscopy.

true
predict
pred ±2σ

1060 1080 1100 1120 1060 1080 1100 1120

30 50 70 90

2.
0

2.
2

2.
4

2.
6

2.
8

3.
0

Total data points

m
o 

(µ
B

)

max. var.
random
weighted
true ±5%

(e)

100 150 200 250

conventional
max. var.
random
weighted

(f)

0 50
Total data points

X
M

C
D

 (a
rb

. u
ni

ts
)

X
M

C
D

 (a
rb

. u
ni

ts
)

Photon energy (eV) Photon energy (eV)

(a) (b)

(c) (d)

true
predict
pred ±2σ

1060 1080 1100 1120 1060 1080 1100 1120

30 50 70 90

2.
0

2.
2

2.
4

2.
6

2.
8

3.
0

Total data points

m
o 

(µ
B

)

max. var.
random
weighted
true ±5%

(e)

100 150 200 250

conventional
max. var.
random
weighted

(f)

0 50
Total data points

X
M

C
D

 (a
rb

. u
ni

ts
)

X
M

C
D

 (a
rb

. u
ni

ts
)

Photon energy (eV) Photon energy (eV)

(a) (b)

(c) (d)

true
predict
pred ±2σ

1060 1080 1100 1120 1060 1080 1100 1120

30 50 70 90

2.
0

2.
2

2.
4

2.
6

2.
8

3.
0

Total data points

m
o 

(µ
B

)

max. var.
random
weighted
true ±5%

(e)

100 150 200 250

conventional
max. var.
random
weighted

(f)

0 50
Total data points

X
M

C
D

 (a
rb

. u
ni

ts
)

X
M

C
D

 (a
rb

. u
ni

ts
)

Photon energy (eV) Photon energy (eV)

(a) (b)

(c) (d)

Figure 2: (a)–(d) XMCD spectra predicted by the GP model. Sm M4,5 XMCD spectra for (a) 30, (b) 40, (c) 50, and (d) 70 data points in 
total. The black dashed and blue solid curves represent the true (experimental) spectrum and the spectrum predicted by the GP model, 
respectively. The open circles represent observed data points. The red solid curves indicate the variance with a 95% confidence interval (±2σ) 
of the predicted spectrum. (e) Orbital magnetic moment mo versus total data points. The red, blue, and green markers represent the methods 
for data-point sampling: maximum variance (max. var.), random, and random sampling weighted by variance, respectively. The black solid and 
dashed lines represent the reference value and 5% deviations, respectively. (f) The total number of data points needed for convergence of mo 
values.
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