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Microscopic Origin of the Ferroelectricity in Multiferroics 
SmMn2O5 Studied by Resonant Soft X-Ray Scattering

We investigated magnetic ordering and electronic state in multiferroic SmMn2O5. This material has a relatively large 
electric polarization among members of the RMn2O5 (R = rare earth) family and other type-II multiferroic materials. How-
ever, the microscopic origin of this large electric polarization was unknown. Our resonant soft X-ray scattering study at 
the Photon Factory suggested that ionic displacements via a collinear magnetic structure mainly contribute to the large 
electric polarization, based on measurements of magnetic ordering of the rare-earth, Mn, and also ligand O ions. In ad-
dition, the study revealed unique electronic states of Mn and O ions in SmMn2O5.

So-called type-II multiferroics, where ferroelec-
tricity is driven by magnetic ordering, have attracted 
intense research interest for several decades. Some 
of them exhibit a non-linear magnetoelectric (ME) ef-
fect, in which the application of an external magnetic 
(electric) field leads to striking changes of the dielectric 
(magnetic) properties of the materials. Among them, 
R Mn2O5 (R = rare earth) compounds have attracted 
much attention since they show various ME effects 
depending on the type of rare-earth ions. Since these 

ME effects are believed due to the complex magnetic 
ordering of rare-earth and Mn ions, revealing the mag-
netic structure is key to understanding the mechanism 
of multiferroicity in this family. Neutron scattering has 
been commonly used to observe the magnetic ordering. 
Resonant soft X-ray scattering (RSXS) is also an ef-
fective tool, particularly for materials containing neutron 
absorber elements, such as Sm or Gd. Furthermore, 
RSXS makes it possible to detect the electronic state of 
ions selectively.

SmMn2O5 has a relatively large electric polariza-
tion in the R Mn2O5 family and multiferroic materials. 
Our previous resonant hard X-ray scattering study [1] 
reported a collinear magnetic structure of Sm and Mn 
ions, where the moments point to the c-axis, as shown 
in Fig. 1(a), which is responsible for the large electric 
polarization via exchange interaction. However, a more 
microscopic origin of the electric polarization, such as 
magnetic-driven ionic displacements and charge trans-
fer between O and Mn ions, remains elusive. Here we 
employed RSXS for SmMn2O5 to observe the magnetic 
ordering and electronic state of Mn and also O ions, and 
discuss the mechanism of the ferroelectricity in this ma-
terial [2].

Figure 1(b) shows RSXS spectra of magnetic re-
flections around Mn L II,III edges of SmMn2O5, and also 
GdMn2O5 for comparison. The spectrum of GdMn2O5 is 
similar to those acquired from other R Mn2O5 [3]. Mean-
while, somewhat different parts were observed in the 
spectrum of SmMn2O5. The intensity increases around 
E = 642 eV [indicated by A in Fig. 1(b)], while it de-
creases and another peak appears around E = 652 eV 
(indicated by B). These differences likely reflect the 
unique electronic state of Mn ions in SmMn2O5.

We also observed a magnetic reflection around 
the O K edge in both SmMn2O5 and GdMn2O5 
[see Fig. 1(c)]. The spectrum of GdMn2O5 has a strong 
peak around E = 530 eV, which indicates the spin polar-
ization of O ions as a result of charge transfer from O to 
Mn ions. Similar spectra have been also acquired from 
R Mn2O5 (R = Tb, Y, Er) [3–5]. A previous RSXS study 
suggested that this charge transfer makes a primary mi-
croscopic contribution to the ferroelectricity in R Mn2O5 
[5]. In sharp contrast, SmMn2O5 exhibits no evident 

peak around E = 530 eV, which suggests that the large 
electric polarization is mainly caused by not the charge 
transfer, but ionic displacements due to exchange inter-
action. Furthermore, this electronic behavior could lead 
to changes of the effective charge of Mn ions [6], which 
results in a different spectrum around Mn L II,III edges.

Meanwhile, several peaks were observed around 
E = 535 eV in SmMn2O5. This energy range is associ-
ated with charge transfer to rare-earth 5d states. Similar 
rare-earth 5d state contributions have been also ob-
served in GdMn2O5 [as shown in Fig. 1(c)] and TbMn2O5 
[4]. Hence it can be concluded that spin polarization of 
O ions is induced by charge transfer between only O 
and Sm ions. Figure 2(a) presents the azimuthal angle 
(ψ) dependence of the resonant intensity at E = 535 eV 
in SmMn2O5. The experimental geometry is shown in 
Fig. 2(b), where we defined ψ = 90 deg. when the c-axis 
is perpendicular to the scattering plane. Figure 2(a) 
also shows calculation values on the assumption that 
magnetic moments of O ions point in the direction of the 
c-axis, which reproduces well the experimental values. 
This is consistent with our conclusion that magnetic mo-
ments of O ions are induced by Sm moments. However, 
the details of these unique electronic states of O and 
Mn ions are still unclear; further theoretical and experi-
mental studies are required.
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Figure 1: (a) Magnetic structure of Sm and Mn ions. (b) (c) 
Energy spectra around Mn L II,III and O K edges, respectively, in 
SmMn2O5 and GdMn2O5.

Figure 2: (a) Azimuthal angle dependence of resonant intensities at E = 535 eV and calculation values. (b) Experimental geometry at 
ψ= 90 deg.
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