Double-perovskite manganese oxides REBaMn,Oq
(where RE is a trivalent rare earth) have various electri-
cal and magnetic phases depending on the ionic radius
of RE [1-3]. When the RE sites are occupied by Sm or
smaller ions, charge ordering is stabilized in a wide tem-
perature range. The charge ordering phase transition
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X-ray oscillation photographs of a NdBaMn,O; single
crystal around 4 4 0 at 280 K and 310 K. The indices are
given for the V2a, x V2a, X 2c, unit cell, where a, and ¢, are
lattice constants of the simple tetragonal unit cell shown in
Temperature dependence of electrical resistivity at 0 T and at
7 T, and (e) magnetization at 0.01 T and 7 T. The magnetic field is
applied perpendicular to the c-axis, and parallel to the electric cur-
rent in
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temperature is above 380 K. In contrast, in NdBaMn,O,4
and PrBaMn,Og, the A-type antiferromagnetic phase
is stabilized below room temperature. Some previous
studies using poly-crystalline samples suggested that
the A-type antiferromagnetism should take place upon
the metal-insulator phase transition. Our recent study
using single crystals, however, showed that the onset
of A-type antiferromagnetism is lower than the metal-
insulator phase transition temperature [4]. Moreover, a
crystal structure analysis by means of synchrotron X-ray
diffraction has suggested that the metal-insulator phase
transition might be caused by xX*-)?-type orbital order-
ing [4]. Though the orbital ordering phase is consistent
with A-type antiferromagnetism, the insulating behavior
within the ab-plane cannot be clearly explained. To clar-
ify the inconsistency, we carried out synchrotron X-ray
diffraction measurement in the insulating phase using a
larger single crystal [5].

The resistivity within the ab-plane steeply changes
at 300 K(Ty,) in . and are
single-crystal X-ray oscillation photographs which were
measured at BL-8A and 8B. The diffraction pattern
above Ty, [ ] is clearly different from that below
T [ 1 All the X-ray reflections in this report
are indexed on the basis of the v2a, x v2a, x 2¢,
unit cell, where &, (~0.4 nm) and ¢, (~0.8 nm) are the
lattice constants of the primitive tetragonal unit cell
of double perovskite, as shown in . Only the
fundamental reflections of the v2a, x v2a, x 2c, unit
cell are observed above T,,, as shown in .In
contrast, many superlattice reflections appear below Ty,
in . The crystal contains orthorhombic twins, as
mentioned in our previous paper. The superlattice re-
flections indicate that the unit cell below T, is . This unit
cell is the same as that of the charge ordering phase of
SmBaMn,Og4 between 200 K and 380 K [6]. Note that
the intensities of the superlattice reflections are more
than six orders of magnitude weaker than some fun-
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Magnetic field dependence of (a) resistivity and magnetization at 290 K and 297 K. Peak profile along (h 4 0) around (c) h= 1
and (d) h=0.5 at 290 K in a magnetic field for the warming run. The indices in (c) and (d) are given for the v2a,, x v2a, X 2c, unit cell.

damental reflections. In our previous study, we used a
crystal of dimensions and could not detect superlattice
reflections. In the present X-ray study we used a much
larger crystal with dimensions of 1 mm x 1 mm x 2 mm.
The checkerboard-type charge ordering which is the
same as that of SmBaMn,Oq is consistent with the in-
sulating behavior within the ab plane. The microscopic
origin of the coexistence of the A-type antiferromagnetic
order and the checkerboard-type charge order remains
unexplained.

In an external magnetic field of 7 T, the metal-
insulator phase transition temperature decreases to
283 K, as shown in . Between 283 and 300 K,
hence, the insulating phase is suppressed by the mag-
netic field. The X-ray reflection profiles at 290 K upon
increasing the field, which were measured at BL-3A, are
shown in . Though the fundamental reflections of
the v2a, x V24, x 2¢, unit cell do not disappear up to
7 T, the superlattice reflection of 0.5 4 0 disappears at
a magnetic field of 6 T or higher. The critical magnetic
field closely corresponds to that of the insulator-metal
phase transition [ ]. This result indicates that the
high magnetic field phase is the same as the zero mag-
netic field phase above Ty. The resistance change is
larger than two orders of magnitude at the phase transi-
tion induced by a magnetic field lower than 2 T at 297 K.
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