Anisotropic Electronic Structure and Perpendicular Magnetic Anisotropy in the Layered Ferromagnetic Semiconductor (Ba,K) (Zn,Mn),As, Elucidated by Angle-Dependent XMCD

The perpendicular magnetic anisotropy of the layered ferromagnetic semiconductor $(Ba,K)(Zn,Mn)_2As_2$ is studied by angle-dependent X-ray magnetic circular dichroism. We uncover the anisotropic distribution of Mn 3*d* electrons by extracting the magnetic dipole term. We find that the doped holes reside in the d_{xz} and d_{yz} orbitals, which are located higher in energy than the d_{xy} orbital because of the D_{2d} splitting that arises from the distorted MnAs₄ tetrahedra. We find that the perpendicular magnetic anisotropy originates from the degeneracy lifting of p- d_{xz} , d_{yz} hybridized states at the Fermi level when spins are aligned along the *z*-axis direction.

Ferromagnetic semiconductors (FMSs) have been studied intensively as they are attractive for future applications. $(Ba_{1-x}K_x)(Zn_{1-y}Mn_y)_2As_2$ is a recently found FMS [1] and has a layered crystal structure, as shown in **Fig. 1(a)**. Unlike prototypical FMSs such as (Ga,Mn) As, the number of carriers and spins can be controlled by the heterovalent K⁺-Ba²⁺ substitution and the isovalent Mn²⁺-Zn²⁺ substitution, respectively. The ferromagnetism has been reported to be carrier-induced, and the Curie temperature (T_c) reaches 230 K, exceeding the T_c of (Ga,Mn)As, 200 K. Since the crystal structure is anisotropic, having distorted MnAs₄ tetrahedra, sizeable perpendicular magnetic anisotropy (PMA) emerges in this system [2].

In this work, we reveal how the anisotropic crystal structure gives rise to the PMA in $(Ba,K)(Zn,Mn)_2As_2$ by performing angle-dependent X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (AD-XMCD) measurements. In conventional XMCD measurement systems, magnetic fields are fixed parallel to the X-rays [longitudinal geometry, Fig. 1(b)], and spin magnetic moments (M_s) are predominantly probed. In this study, on the other hand, we applied magnetic fields such that the spin magnetic moment became perpen-

dicular to the X-rays [transverse geometry, Fig. 1(c)]. In this way, we can extract the magnetic dipole term (M_T), a hallmark of the anisotropic spin distribution [3].

We measured Ba_{0.904}K_{0.096}(Zn_{0.805}Mn_{0.195})₂As₂ single crystals with $T_{\rm C}$ = 60 K. Figure 1(d) shows the XAS and XMCD spectra taken in the longitudinal geometry (LXMCD). Figure 2(a) shows the XMCD spectra taken in the transverse geometry (TXMCD). The distinct TXMCD spectra guarantee that the TXMCD signals do not originate from a residual spin component but from the magnetic-dipole-term component, highlighting the anisotropic Mn 3*d* spin distribution in (Ba,K)(Zn,Mn)₂As₂.

In order to understand the LXMCD and TXMCD spectra, we performed configuration-interaction cluster model calculations, the results of which are shown in **Figs. 1(d)** and **2(a)**. Here, the used parameters are the same as those used for (Ga,Mn)As [4] except for the D_{2d} splitting that accounts for the distorted MnAs₄ tetrahedra. Note that the LXMCD spectra can be reproduced regardless of the D_{2d} splitting, but the TXMCD spectra require the D_{2d} splitting. The calculation indicates that the d_{xz} and d_{yz} states should be located higher in energy than the d_{xy} states and that the d_{x2-y2} state should be located higher than the d_{yz} state.

Figure 1: (a) Crystal structure. (b) and (c) XMCD measurement geometries. (d) Mn L₂₃-edge XAS and XMCD spectra taken in the longitudinal geometry (LXMCD). The calculated spectra are also shown by the red curves.

Figure 2: (a) Mn L_3 -edge XMCD spectra taken in the transverse geometry (TXMCD). (b) Schematic energy diagram of the occupied majorityspin Mn 3*d* orbitals in (Ba,K)(Zn,Mn)₂As₂. White circles represent doped holes. Inset shows how the top-most d_{xz} and d_{yz} levels with holes result in energy gain depending on the spin orientation.

Figure 2(b) schematically summarizes the present findings. Under the tetrahedral crystal field, the Mn 3*d* orbitals are split into doubly generate $e(d_{x2\cdoty2}, d_{z2})$ orbitals and triply degenerate $t_2(d_{xy}, d_{yz}, d_{zx})$ orbitals, as shown in the left column of **Fig. 2(b)**. The t_2 orbitals hybridize with the As 4*p* orbitals and form bonding and antibonding *p*- t_2 orbitals, while the *e* orbitals remain intact, as shown in the middle column. This configuration is realized in cubic (Ga,Mn)As, and holes residing in the antibonding *p*- t_2 orbitals mediate the ferromagnetic interaction. In the case of (Ba,K)(Zn,Mn)₂As₂, the elongation of the MnAs₄ tetrahedra further splits t_2 levels into $d_{xz,yz}$ and d_{xy} levels and *e* levels into d_{x2-y2} and d_{z2} levels, as shown in the right column of **Fig. 2(b)**. The doped holes thus reside in the *p*- $d_{xz,yz}$ hybridized orbitals.

Magnetocrystalline anisotropy results from the energy gain through spin-orbit coupling when spins are aligned along a specific direction, and only the orbitals near the Fermi level are relevant. In the present system, $p \cdot d_{xz,yz}$ hybridized orbitals with holes are responsible for the PMA. The inset of Fig. 2(b) illustrates how the PMA appears in (Ba,K)(Zn,Mn)₂As₂. When spins are aligned along the *z*-axis, the degeneracy of $d_{xz,yz}$ will be lifted due to spin-orbit interaction to form $d_{xz} \pm i d_{yz}$ orbitals, resulting in an energy gain. On the other hand, when spins are aligned in the x-y plane, the $d_{xz,yz}$ orbitals remain degenerate, and therefore there is no energy gain.

To summarize, the PMA originates from the energy gain due to the degeneracy lifting of $p \cdot d_{xz_{2}yz}$ orbitals at the Fermi level when spins are aligned along the *z*-axis. The present results [5] also suggest that it is possible to control the magnetic anisotropy by engineering the magnitude of the D_{2d} splitting; this new degree of freedom would be helpful in future applications.

REFERENCES

- K. Zhao, Z. Deng, X. C. Wang, W. Han, J. L. Zhu, X. Li, Q. Q. Liu, R. C. Yu, T. Goko, B. Frandsen, L. Liu, F. Ning, Y. J. Uemura, H. Dabkowska, G. Luke, H. Luetkens, E. Morenzoni, S. R. Dunsiger, A. Senyshyn, P. Böni and C. Q. Jin, *Nat. Commun.* 4, 1442 (2013).
- [2] G. Q. Zhao, C. J. Lin, Z. Deng, G. X. Gu, S. Yu, X. C. Wang, Z. Z. Gong, Y. J. Uemera, Y. Q. Li and C. Q. Jin, *Sci. Rep.* 7, 14473 (2017).
- [3] G. Shibata, M. Kitamura, M. Minohara, K. Yoshimatsu, T. Kadono, K. Ishigami, T. Harano, Y. Takahashi, S. Sakamoto, Y. Nonaka, I. Keisuke, Z. Chi, M. Furuse, S. Fuchino, M. Okano, J. Fujihira, A. Uchida, K. Watanabe, H. Fujihira, S. Fujihira, A. Tanaka, H. Kumigashira, T. Koide and A. Fujimori, *npj Quantum Mater.* **3**, 3 (2018).
- [4] M. Kobayashi, H. Niwa, Y. Takeda, A. Fujimori, Y. Senba, H. Ohashi, A. Tanaka, S. Ohya, P. N. Hai, M. Tanaka, Y. Harada and M. Oshima, *Phys. Rev. Lett.* **112**, 107203 (2014).
- [5] S. Sakamoto, G. Q. Zhao, G. Shibata, Z. Deng, K. Zhao, X. Wang, Y. Nonaka, K. Ikeda, Z. Chi, Y. Wan, M. Suzuki, T. Koide, A. Tanaka, S. Maekawa, Y. J. Uemura, C. Q. Jin and A. Fujimori, *ACS Appl. Electron. Mater.* **3**, 789 (2021).

BEAMLINE

BL-16A2

S. Sakamoto¹, G. Q. Zhao², G. Shibata¹, Z. Deng², K. Zhao², X. C. Wang², Y. Nonaka¹, K. Ikeda¹, Z. Chi¹, Y. Wan¹, M. Suzuki¹, T. Koide³, A. Tanaka⁴, S. Maekawa^{5, 6}, Y. J. Uemura⁷, C. Q. Jin² and A. Fujimori^{1, 8} (¹The Univ. of Tokyo, ²Chinese Academy of Sciences, ³KEK-IMSS-PF, ⁴Hiroshima Univ., ⁵RIKEN, ⁶Univ. of Chinese Academy of Sciences, ⁷Columbia Univ., ⁸Waseda Univ.)