Scaling Relation between Electrochemical Seebeck Coefficient and Viscosity

The electrochemical Seebeck coefficient \(\alpha \) (= d\(V \)/d\(T \); \(V \) is redox potential) is a key parameter for thermal energy harvesting. We systematically investigated \(\alpha \) for Fe\(^{2+}/Fe^{3+} \) in 16 organic solvents. \(\alpha \) showed remarkable solvent dependence and was distributed from 0.14 mV/K for glycerin to 3.60 mV/K for acetone. We further found a scaling relation between \(\alpha \) and viscosity \(\eta \) of the solvent as \(\alpha \sim \eta^{-0.4} \), which is interpreted in terms of the configuration entropy of the solvent molecules. In addition, we found that the \(O_h \)-type octahedral coordination of the solvent molecules showed \(D_{4h} \)-type deformation with increase in \(\eta \).

To realize a zero-emission society, it is necessary to develop highly efficient and low-cost thermal energy harvesting devices that produce electric energy from human body heat or waste heat near room temperature. An energy harvesting thermocell consisting of hot/warm or cold electrodes of identical type and solution with redox couple was proposed in the 1950s and 1960s and is still undergoing active research and development. Similarly to a solid thermoelectric device, the thermocell converts temperature difference (\(\Delta T \)) between the two electrodes to electric energy. An energy harvesting thermocell was observed to produce electric energy from 0.14 mV/K for glycerin to 3.60 mV/K for acetone. We further found a scaling relation between \(\alpha \) and \(\eta \) of the solvent as \(\alpha \sim \eta^{-0.4} \) and interpreted the relation in terms of the enhanced \(\Delta S_{\text{config}} \) in the low-\(\eta \) solution. Furthermore, \(\alpha \) showed strong solvent dependence and was widely distributed from 0.14 mV/K for glycerin to 3.60 mV/K for acetone. Based on the pre-edge spectra at the Fe K-edge around Fe\(^{2+} \), the solvent dependence is ascribed to \(D_{4h} \)-type deformation of the Fe\(_6 \) octahedra.

\[
\alpha \sim \eta^{-0.4}
\]

Figure 1: Electrochemical Seebeck coefficient \(\alpha \) against viscosity \(\eta \) of solvent. Squares and triangles represent protic and aprotic solvents, respectively.

Figure 2: Pre-edge spectra at the Fe K-edge around Fe\(^{2+} \) in several solutions: EG, 1Pr, and 1Bu denote ethylene glycol, 1-propanol, and 1-butanol, respectively. Physical quantities in parentheses indicate \(\eta \) of the solvent.