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Machine-Learning-Accelerated Data Analysis for X-Ray 
Diffraction
Identification of crystal structures is one of the core objectives of materials science. Mathematical optimization and 
machine-learning techniques have allowed rapid estimations of crystal structures from powder X-ray diffraction data. It 
has been suggested that these techniques can help concretize the rules of thumb for measured data analyses based 
on large amounts of materials data and obtain candidate crystal structures that are unaffected by bias of the analyst. 
These techniques also help researchers solve more complex problems more quickly.

structured Parzen estimator (TPE), an algorithm based 
on Bayesian optimization. 

The optimization history of Y2O3 is shown in Fig. 1. 
The value of Rwp decreased with the progress of opti-
mization by the TPE, and, on average, our proposed 
method exceeded human expertise at ~100 evaluations. 
In each experiment. The calculation time required for 
100 evaluations was ~30 min on a general computer. 
Moreover, in 100 experiments with different random 
seeds to run TPE, we confirmed that 90Rwp was less 
than the result obtained by the expert. These results 
demonstrate that the proposed method based on BBO 
has the potential to realize automatic Rietveld analysis 
with the same or better performance than that of experts.

Similarly, for Dy0.5Sr0.5MnO3, the experiment was 
repeated 100 times with different random seeds 
used to run the TPE. Using multidimensional scaling, 
we visualized the similarity between the crystal struc-
tures obtained using BBO (Fig. 2). Each point corre-
sponds to one crystal structure, and the distance in the 
figure corresponds to the similarity of the structures. 
In the lower right of the figure, crystal structures similar 
to the results obtained by the expert formed a loose 
cluster. This result indicates that structures comparable 
to the expert’s results could be obtained automatically. 
In addition, there is an outlier structure in the upper left 
corner of Fig. 2, where Rwp converges well enough. 
The difference from the other structures, that is, the po-
sitional shift corresponding to 5% of the lattice param-
eter, is considered sufficient to affect the physical prop-
erties. Although conventional criteria would reject this 

structure because isotropic atomic displacement factors 
(Uiso) of atoms with similar masses are not comparable, 
the ability to propose quite different structure candidates 
is a major feature of the BBO approach. We contend 
that this approach removes the human-origin bias and 
may lead to new discoveries that have been overlooked 
in the past.

As a different approach, we proposed a method to 
predict crystal structure features directly from PXRD 
patterns using ML without using Rietveld analysis [2]. 
In this study, we developed a technique that can predict 
the crystal system and space group, which are essen-
tial features of the crystal structure, with an accuracy of 
>90% and >80%, respectively, and in <1 ms. This per-
formance is sufficient for screening a large amount of 
data. 

We not only developed a prediction model but also 
gained data-driven insight, such as concerning the effect 
of the number of diffraction peaks used for prediction of 
the prediction accuracy (Fig. 3) and the importance of 
data features. Furthermore, from the learned ML model 

analysis, we quantified some of the tacit knowledge 
used by expert users to predict the approximate crys-
tal system when they look at the PXRD pattern. Such 
knowledge may help in designing a minimum but effec-
tive measurement setup and an experimental plan for a 
specific purpose.

ML-accelerated data analysis in quantum beam ex-
periments is developing rapidly and will help research-
ers focus on more creative work and solve more com-
plex problems.
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Figure 1: Optimization history for Y2O3. The curves show the optimization history of Rwp for Y2O3. Our proposed method exceeded the human 
expert at ~100 evaluations [1].

Figure: 3 Classification accuracy of crystal system versus number of peak positions used for prediction [2].
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Rapid advances in materials informatics, the ap-
plication of machine learning (ML) and information 
processing techniques to materials science are chang-
ing the field of materials science. In contrast to physi-
cal measurements, which have long been regarded as 
targets for efficiency improvement, data analysis has 
largely remained dependent on trial and error by hu-
mans. Consequently, data analysis has become a time 
bottleneck in the development of materials. Herein, we 
introduce some recent studies on ML-accelerated data 
analysis methods for quantum beam experiments.

Powder X-ray diffraction (PXRD) is one of the es-
sential tools used in materials analysis. Rietveld analy-
sis, a method to obtain a precise crystal structure model 
with curve fitting to the measured PXRD patterns, is a 
popular method for PXRD pattern analysis.

Although Rietveld analysis has a long history and 
is a reliable method, it requires setting numerous pa-
rameters independent of the properties of the material, 
such as the choice of a background function and the 
setting of peak shape. Because these settings signifi-
cantly impact the results, trial and error and expertise 
are required to obtain appropriate analysis results. 
We realized that this situation is similar to hyperparam-
eter optimization for ML models and formulated the 
trial-and-error process of Rietveld analysis as a black 
box optimization (BBO) problem to find a setting that 
minimizes the weighted profile residual factor (Rwp) [1]. 
As the optimization target by BBO, we chose 13 param-
eters (e.g., background function and variables to be fit-
ted) and solved this optimization problem using the tree-

Figure: 2 Multidimensional scaling visualization. Each point in this figure represents a crystal structure refined with the 100 configurations 
optimized by BBO (i.e., 100 crystal structures with the best Rwp among 200 configurations from each of 100 runs) or the crystal structure 
refined with the best configuration by a human expert [1].


