3-5. 低速陽電子グループ

永井 康介 物質構造科学研究所放射光科学第一研究系

1. 概要

低速陽電子グループは、物質最表面の結晶構造と物性と の関係解明,陽電子やポジトロニウム(Ps),Ps負イオン といった粒子の基礎的性質の解明,それらの粒子と物質と の相互作用の解明を目的として、全反射高速陽電子回折 (TRHEPD),低速陽電子回折(LEPD),汎用ステーション(Ps 負イオン実験,Psレーザー冷却実験),ポジトロニウム飛 行時間(Ps-TOF)測定などの研究を進めている。

スタッフは,自身の研究と共に,ビームライン・ステー ションの最適化や研究開発を行い,その上で共同利用研究 を推進している。構成ビームライン・実験ステーション名 と担当者は下記のとおり。

BL・実験 ステーション	担当者		備考(ユーザー運営, 大学運営など)
SPF-A3: TRHEPD	望月	出海,	整備には日本原子力研究
ステーション	兵頭	俊夫	開発機構深谷有喜氏が協
			力。
SPF-A4: LEPD ステ	望月	出海,	整備には量子科学技術研
ーション	兵頭	俊夫	究開発機構和田健氏,産
			業技術総合研究所白澤徹
			郞氏が協力。
SPF-B1: 汎用陽電	望月	出海,	Ps 負イオン - 実験のため
子実験ステーショ	兵頭	俊夫	に整備され,現在は Ps
ン			レーザー冷却実験に用い
			られている。整備には東
			京大学石田明氏が協力。
SPF-B2: Ps-TOF ス	望月	出海,	整備には東京理科大学長
テーション	兵頭	俊夫	嶋泰之研究室,量子科学
			技術研究開発機構河裾厚
			男グループが協力。

2. 活動内容

【グループとして推進している研究】全反射陽電子回折 (TRHEPD) および低速陽電子回折(LEPD) による表面構 造および表面直下の格子緩和の研究, Ps レーザー冷却研 究,および Ps 飛行時間(Ps-TOF) 法による表面研究。現 在多くの成果が出つつある TRHEPD をさらに発展させ, 多数の表面科学の重要問題に関係する原子配列を陽電子回 折によって解決する。

2016年度以降,新たに3グループの共同利用が開始され, 新奇な表面構造や特性の解明に挑戦している。2017年度 には興味深い結果が出た共同利用もあり,論文執筆を開始 した。

また,科研費等により完成した LEPD ステーション (SPF-A4) での測定を開始した。 【ビームライン整備】当グループが管理するビームライン 分岐ステーションは、様々な研究者が in situ で試料作製し て実験を行うため、試料作製/評価環境に対する様々なニ ーズがある。まだ十分対応できる環境になっていないが、 予算の範囲で希望の強いものから整備していきたい。 【グループ内活動】月に1度グループミーティングを開催 し、情報交換、活動報告、研究報告、今後の方針、競争的 資金申請等の議論を行っている。

3. 今後の展望

TRHEPDは、全反射条件で最表面のみの情報を得られ るだけでなく、視射角を臨界角より大きくすることで表面 直下の原子配置情報も得られる。引き続き、TRHEPDで、 起伏が大きいために構造が確定していない表面の解明に挑 戦する。例えば、最近盛んに合成されている単原子層物 質の構造は、基板物質の種類によって多様である。その 中でも表面科学的に重要なものについて解明する。また、 TRHEPDの特徴を最大限に活かすため、視射角を変えるこ とでプローブ深さを調節しつつ回折スポットの強度を方位 角の関数として測定する方位角プロット法の開発も進める。

LEPD は、低速電子回折(LEED)で行われている*I-V* 曲線解析のほか、LEED では難しいホログラフィー法やパ ターソン関数を用いた解析法などの開発を進める。

汎用ステーションは, Ps 負イオンの研究が一段落した 後に開始された,将来のPs ボース - アインシュタイン凝 縮の実現に必要なPs レーザー冷却の研究を継続する。

Ps-TOF は,引き続き Ps 生成と放出を通じた,金属,半 導体,絶縁体表面の電子構造の研究を展開する。

ユーザー増加に伴って、測定時間短縮のための低速陽電 子ビーム強度増強の希望が強い。現状は、リニアック出力 の最大定格が、放射線防護のため制限されている。天井が 厚くシールド増設の容易な北側の旧テスト・リニアック室 に陽電子生成ターゲットを移設すれば、現加速管の電流増 強(パルス幅伸張)や加速管の一段追加などが可能で、最 小限の費用で強度増強できる。強度が一桁増して 10⁸ e⁺/s になれば、多くの共同利用ユーザー受け入れが可能になる。 また、パルスストレッチと組み合わせ、2 次元2 光子角相 関(2D-ACAR)法による表面近傍の電子 - 陽電子対の運 動量分布測定も短時間で可能になる。

日本陽電子科学会は、日本学術会議の学術大型研究計画 に低速陽電子研究施設計画を継続的に提出しており、今後 大型計画が実現する場合、本施設がその中核的な役割を果 たすことを期待している。低速陽電子実験施設では、今後 もこのような新しい陽電子研究を推進してゆきたい。

SPF-A3:全反射高速陽電子回折(TRHEPD)ステーション

望月 出海,兵頭 俊夫 ¹物質構造科学研究所放射光科学第一研究系

1. 概要

本ステーションでは、KEK-PF 低速陽電子実験施設(slow positron facility, SPF)の専用リニアックで生成されたロ ングパルスモードの高強度・高輝度低速陽電子ビーム[1, 2]を用いて、全反射高速陽電子回折(total-reflection highenergy positron diffraction, TRHEPD [3])実験を行っている。 実験は、10 keV に加速した高輝度陽電子ビームをすれす れ視射角で試料に打ち込み、進行方向に配置したスクリー ンに現れる回折パターンを撮影する(図1)。入射陽電子 ビームに対する試料の視射角(0)と方位角(ф)はPC 制 御により自動調整でき、視射角変化させながらパターン取 得する方法(ロッキング曲線)と、方位角変化させながら パターン取得する方法(方位角プロット)のどちらも測定 可能である。

測定試料の標準的な大きさは 10 mm × 5 mm × 0.5 mm (t)。試料は、ロードロック室を経由して超高真空を破らず 測定チェンバ内に導入され、試料マニピュレータにセット される。マニピュレータ上では、試料の直接通電加熱・電 子衝撃加熱(室温~1500 K 程度)、GM 冷凍機とヒーター 併用の低温域の試料温度制御(20 K~250 K 程度)が可能 である。その他、2. に記すような設備が備わっており、 それらを利用する範囲で in situ 試料作製にも対応できる。

2. 整備開発および運用状況

2017 年度は, 試料マニピュレータのメンテナンスを実施し, 入射陽電子ビームに対する試料の視射角(θ) と方 位角(φ)の調整が 0.1°以下の精度でスムーズにできるようになった。

現在,本ステーションには,TRHEPD 測定システムの 他,以下が常設されている:RHEED 装置,Ar⁺イオンス パッタ装置,蒸着源用ポート(ICF70×4),電子衝撃加熱 型3源エバポレータ,Arガス導入,O₂ガス導入,H₂ガス 導入,試料通電/電子衝撃加熱機構,試料冷却/温度制御 機構,試料ストック交換用ロードロック機構,試料ホルダ (×3),試料温度測定用放射温度計。

図1 TRHEPD 実験配置

3. ビームタイム利用状況

SPFでは、一台の専用リニアックで生成した低速陽電子 ビームを、輸送ラインの途中で4本(SPF-A3, A4, B1, B2)に分岐して、ビームタイム毎のタイムシェア方式で 共同利用実験に供している。このため SPF-A3 のビームタ イムは、他3本と一体で、実験審査委員会(PAC)評点に 基づいて調整される。どの課題も統計が必要な蓄積型実験 で、1課題に対して概ね4日間割り振られる。ビームタイ ム開始前の事前準備や、ビーム輸送パラメータのセットア ップは、休日関係無く、内部スタッフが対応している。十 分経験のあるユーザーは、輸送パラメータ変更などを各自 で行なうことが可能になりつつある。

2017 年度の本ステーション利用課題は、「(S2) 全反射 高速陽電子回折を用いた最表面構造決定」、「(G) Ge(110)2 × 16 超構造の TRHEPD 測定」、「(G) 触媒担体材料結晶の 表面構造解明のための全反射高速陽電子回折 (TRHEPD) を用いた新手法開発」、「(G) アナターゼ型酸化チタン表 面の構造解析と金属絶縁体転移の研究」、「(G) 反射高速 陽電子回折による Ag(100) 上のバナジウム酸化物超薄膜の 構造解析」、「(G) 全反射高速陽電子回折(TRHEPD)法 による 2 層グラフェン層間化合物の表面構造解析」、「(G) 全反射高速陽電子回折を用いた IV 族原子層物質の構造 解析」、「(G) 全反射高速陽電子回折を用いた 2 次元超伝 導体の構造解析」、「(G) 全反射高速陽電子回折を用いた ZrB,薄膜上のシリセンの構造決定」である。

2016 年度に発表した, Al(111) 面上のゲルマネンのバッ クリングの非対称性の発見 [4] に続いて, 2017 年度は, 2 層グラフェン層間化合物の表面構造解析 [5] や, TRHEPD 方位角プロット法の開発 [6] などの成果が出ており, 近く 論文投稿される予定である。

4. 今後の展望

TRHEPD の認知度が上がり,2013 年以降共同利用ユー ザーは着実に増加している。引き続き,TRHEPD の表面 超敏感性を活かして,表面特性が重要な単原子層物質,遷 移金属ダイカルコゲナイド,新合成の超薄膜物質,触媒物 質などの構造解析の計画がある。一方で,ビームタイム配 分率が低下し,慢性的なビームタイム不足の問題が表面化 し始めている。これを当面解決するため,試料交換や in situ 試料作製を効率化するための試料準備チェンバ整備が ユーザーから強く要望されており,早急の予算確保を目指 している。根本的な解決策としては,専用リニアック増強 による低速陽電子強度 10 倍増を進める必要がある。

引用文献

- K. Wada, T. Hyodo, A. Yagishita, M. Ikeda, S. Ohsawa, T. Shidara, K. Michishio, T. Tachibana, Y. Nagashima, Y. Fukaya, M. Maekawa and A. Kawasuso, Eur. Phys. J. D 66, 37 (2012).
- [2] M. Maekawa, K. Wada, Y. Fukaya, A. Kawasuso, I. Mochizuki, T. Shidara and T. Hyodo, Eur. Phys. J. D 68, 165 (2014).
- [3] A. Ichimiya, Solid State Phenom. 28/29, 143 (1992).
- [4] Y. Fukaya, I. Matsuda, B. Feng, I. Mochizuki, T. Hyodo, S. Shamoto, 2D Materials 3, 035019 (2016). http://www.kek.jp/ja/NewsRoom/Release/ pressrelease20160913.pdf (KEK プレスリリース).
- [5] 遠藤由大,深谷有喜,望月出海,高山あかり,兵頭 俊夫,長谷川修司,日本物理学会第73回年次大会, 22pPSB-71 (2018).
- [6] 望月出海,深谷有喜,一宮彪彦,兵頭俊夫,日本物 理学会第73回年次大会,4pK603-2 (2018).

SPF-A4:低速陽電子回折(LEPD)ステーション

望月 出海^{1,} 兵頭 俊夫^{1,} 和田 健^{2,} 白澤 徹郎^{3,} 藤浪 眞紀^{4,} 前川 雅樹^{2,} 河裾 厚男², 高橋 敏男⁵ ¹物質構造科学研究所放射光科学第一研究系,

²量子科学技術研究開発機構^{,3}產業技術総合研究所,⁴千葉大学,⁵東京学芸大学

1. 概要

SPF-A4 では、KEK-PF 低速 陽 電 子 実 験 施 設 (Slow positron facility, SPF)の専用リニアックのロングパルス モードで生成された高輝度・高強度低速陽電子ビームを 用いた,低速陽電子回折 (Low-energy positron diffraction, LEPD)実験ステーションの開発が行なわれている。LEPD 法は,結晶表面構造解析の手法である低速電子回折 (Lowenergy electron diffraction, LEED) 法の 陽 電 子 版 で あ る。LEPD は,X線回折と同様な単純な散乱因子を持ち, LEED よりも表面敏感でかつ多重散乱が少ないため,理想 的な表面構造解析手法になり得ると理論家により予想され ている [1]。

SPF-A4 で開発中の LEPD 実験装置では、パルス幅 1.2 µs の 5 keV の陽電子パルスビームを接地電位のビーム ラインで磁場輸送し、パルスストレッチャーによりパルス 幅を 200 µs に広げると共に、5.2 keV にエネルギーを上昇 させて用いる。この陽電子ビームを非磁場領域に開放した 後、電磁レンズと厚さ 150 nm の Ni 薄膜からなる輝度増 システムによりビーム輝度を上げ、静電レンズによりエネ ルギー 25-500 eV の陽電子を LEPD 検出器のセンターホー ルを通過させて試料に入射する。LEPD 検出器には、シェ ブロンタイプの MCP の背面に遅延アノード検出器 (Delayline detector, DLD) を配置したものを用い、回折パターン のデジタル情報をカウンティングベースで得る

2. 整備開発および運用状況

2015 年度までに,パルスストレッチャーの開発と輝度 増強ユニットの導入を行ない,2016 年度にはそれらの試 験・評価を行うと共に LEPD 実験の共同利用を開始した。 2017 年度は前年度に改良した装置で実験を継続した。

磁場輸送されてきた陽電子を磁場レンズでリモデレータ (Ni 薄膜)に収束し,薄膜の背面から負の仕事関数により 1 eV で再放出される陽電子を2 組のアインツェルレンズ で静電輸送した。図1に,この静電レンズの写真を示す。 静電レンズの一部をμメタルで作成し,円筒形のμメタ ルと共に静電レンズ系を覆い(図1右),地磁気とビーム ラインからの磁場を遮蔽する構造にした。静電レンズの接 地電位の先端部は,MCP,DLD,リターディンググリッ ドのセンターホールを共通して貫くノズルがついており, 20 eV から 500 eV の陽電子ビームが試料に入射する。

試料位置でビームを観測するためのマイクロチャンネ ルプレート(MCP)アッセンブリを改造した静電ミラー により,陽電子ビームを180°からやや傾いた角度に反射

図1 リモデレータにより輝度増強した陽電子ビームを静電輸送 するための静電レンズとそれを覆うµメタル。

図 2 (左) ビームモニタ用の MCP/ 静電ミラー。(右) 静電ミラ ーにより反射させた LEPD ビームを LEPD 検出器でとらえ た様子(対数値のカラー表示)。

させて LEPD 検出器でとらえた。MCP アッセンブリ前面 に高透過率のメッシュをはり,接地電位のメッシュに対 して MCP 前面に電圧を印加することで陽電子ビームを反 射させた。通常の MCP によるビーム観測も可能である。 図 2 に静電ミラーとして用いることができるよう改造し た MCP アッセンブリの写真(図 2 左)と,この静電ミラ ーにより反射したビームを LEPD 検出器でとらえたスポッ ト(図 2 右,対数値のカラー表示)を示す。この結果から, エネルギーによらず,半値全幅で 1.5 mm 程度のビームが LEPD 検出器位置で得られていることを確認すると共に, 同じ手法で MCP-DLD の動作条件及びリターディングメッ シュに印加する電圧条件を決めた。 また、時間と MCP の出力パルス波高で弁別することで、 LEPD パターンの観測データの S/N を改善するため、前年 度までに導入したパルス波高弁別のための測定系と、パル スストレッチャーと同期して時間弁別するシステムを統合 した。すなわち、パルスストレッチャーにより 200 μs に パルス幅を調整したビームが到達した時のみ時間的に切 り出すことで、MCP の暗電流によるバックグラウンドを 1/100 に低減し、さらに減衰指数関数的に分布する γ 線由 来の信号と、ガウシアン的に分布する陽電子由来の信号を 波高弁別できるようにした。

さらに,フォノン散乱によるデバイワラー効果を低減し てより強い反射強度を得るために,試料表面温度を120K まで冷却するためのシステムを構築した。

これらの改良により,LEPDパターン観測の準備が整った。

3. ビームタイム利用状況

SPFでは、一台の専用リニアックを用いて生成した低速 陽電子ビームの輸送ラインの途中に分岐を作り、4本の分 岐ビームライン(SPF-A3、A4、B1、B2)で、ビームタイ ム毎のタイムシェア形式で共同利用に供している。2017 年度に SPF-A4 を利用した課題は、「(S2)低速陽電子回折 法による表面構造解析」である。

4. 今後の展望

来年度は明瞭な陽電子回折パターンの観測を報告し, I-V 解析を開始する。さらに LEPD ホログラフィー法の検 証を開始する。また,パターソン関数による逆変換を行な うための実験にも着手する。

引用文献

[1] S. Y. Tong, Surf. Sci. 457, L432 (2000).

SPF-B1:汎用陽電子実験ステーション

望月 出海¹, 兵頭 俊夫¹, 石田 明² ¹物質構造科学研究所放射光科学第一研究系, ²東京大学

1. 概要

本汎用ステーションは、低速陽電子実験施設(Slow Positron Facility, SPF)の低速陽電子ビームの特長(高強 度であること,およびパルス状であること)を利用した種々 の研究のために用意されている。2016年度までポジトロ ニウム負イオン(Ps⁻)関連の実験が行われていたが[1], 現在は、ポジトロニウム(Ps)レーザー冷却実験装置が設 置されている。

2017 年度に行った Ps レーザー冷却予備実験の概念図を 図1に示す。専用リニアックの短パルスモード(~10 ns, 50 Hz)で生成された高強度(~10⁶ e⁺/s)の低速陽電子ビー ムを、レーザー冷却用に試作した新規シリカガラス材料に 入射して Ps を生成する。バンチ当たり大量の陽電子が含 まれるパルスビームであるためこれに適したガンマ線検出 法を試験するとともに、新規シリカガラス材料の有用性を 調べる。サンプルバイアスを変化させることで陽電子入射 エネルギー依存性も調べることができる。この実験では装 置内 7 × 10-7 Pa 程度の真空が維持されている。

2. 整備開発および運用状況

Ps は陽電子1個と電子1個からなる束縛状態である。 束縛系量子電磁力学(QED)の精密検証に大変重要な研 究対象であるとともに、反物質を含むシンプルな系である ため、物質・反物質非対称性(なぜ現在の宇宙に物質だけ が残ったのか)の解明に有用である。Ps を10 K 以下まで 冷却すれば、Ps のエネルギー準位の超精密測定や、将来

図1 Ps レーザー冷却予備実験のセットアップ概念図。Ps 生成 ターゲット 3 種類を測定できるサンプル導入機と, MCP + Phosphor Screen の導入機は独立しており,同じ場所にどち らかを導入することができる。ガンマ線検出器と CCD カ メラはノンスケール。

的にスピン偏極陽電子ビームを用いることによって反物質 を含む系における世界初のボース・アインシュタイン凝 縮(BEC)を実現できる。特に BEC を実現すれば,コヒ ーレンシーを利用して原子干渉計を用いた反物質重力の測 定(弱い等価原理の検証)や,対消滅ガンマ線を用いたガ ンマ線レーザーの世界初実現に応用できる。Ps レーザー 冷却を行うことによって 10 K までの高速冷却を行い BEC が実現可能であることを理論的に示し [2-4],そのための Ps レーザー冷却の世界初実現に向けた実験を行っている [5,6]。この実験は,世界初の Ps-BEC 実現を目指した実験 として,世界中から大きな注目を浴びている。

Ps レーザー冷却実験成功の鍵は,SPF 低速陽電子ビー ムの大強度かつ短パルスである特性が,Ps レーザー冷却 に必要なパルスレーザーの時間特性と合致しており,レー ザー光と同期した実験が可能であることである。このビー ム特性に適したガンマ線検出法とレーザー冷却用 Ps 生成 ターゲットとしての新規シリカガラス材料を試験するた め,新たに超高真空用マニピュレーター(直線導入機)を 取り付けて予備実験を行った。また真空排気にターボ分子 ポンプを使用しているため,ビームライン汚染対策として 停電時に自動で閉まるゲートバルブを新たに取り付けた。

3. ビームタイム利用状況

SPFでは、一台の専用リニアックを用いて生成した 低速陽電子ビームを下流で分岐し、4本のビームライン (SPF-A3, A4, B1, B2)で、ビームタイム毎のタイムシ ェア形式で共同利用に供している。本ビームライン利用課 題は「(P)ポジトロニウムレーザー冷却のための新しい シリカキャビティとガンマ線検出手法の試験」である。こ れは既に採択されている 2018 年度課題「(G)ポジトロニ ウムのレーザー冷却」の予備実験としての位置づけである。

4. 今後の展望

本汎用ステーションは、レーザー設置用の定盤を置くス ペースが確保されているために、レーザーを利用したさま ざまな Ps や Ps 負イオンの実験が可能である。2018 年度 には陽電子ビームの質を時間的・空間的に向上させるため のチョッパー・集束レンズを導入し、さらに新規レーザー システムやサンプル冷却システムを導入してレーザーを用 いた Ps 温度測定を行う。2019 年度中にも新規レーザーシ ステムを追加して世界初の Ps レーザー冷却を実現する計 画である。

引用文献

- [1] K. Michishio, T. Kanai, S. Kuma, T. Azuma, K. Wada, I. Mochizuki, T. Hyodo, A. Yagishita, and Y. Nagashima, Nat. Commun. 7, 11060 (2016). http://www.kek.jp/ja/NewsRoom/Release/20160318103000/ (KEK \mathcal{TVZUU}) $-\mathcal{T}$).
- [2] K. Shu, X. Fan, T. Yamazaki, T. Namba, S. Asai, K. Yoshioka and M. Kuwata-Gonokami, J. Phys. B: At. Mol. Opt. Phys. 49, 104001 (2016).
- [3] K. Shu, T. Murayoshi, X. Fan, A. Ishida, T. Yamazaki, T. Namba, S. Asai, K. Yoshioka, M. Kuwata-Gonokami, N. Oshima, B. E. O'Rourke and R. Suzuki, J. Phys.: Conf. Ser. 791, 012007 (2017).
- [4] A. Ishida, K. Shu, T. Murayoshi, X. Fan, T. Namba, S. Asai, K. Yoshioka, M. Kuwata-Gonokami, N. Oshima, B. E. O'Rourke and R. Suzuki, JJAP Conf. Proc. (Accepted for publication in 2018).
- [5] A. Ishida, "Study on positronium Bose-Einstein condensation" (invited), The 3rd China-Japan Joint Workshop on Positron Science (JWPS2017), June 06, Hefei, China (2017).
- [6] A. Ishida, "Recent progress in positronium experiments for Bose-Einstein condensation" (invited), Low Energy Antiproton Physics Conference 2018 (LEAP 2018), March 15, Paris, France (2018).

SPF-B2:ポジトロニウム飛行時間測定(Ps-TOF)ステーション

望月 出海¹, 兵頭 俊夫¹, 長嶋 泰之², 河裾 厚男³ ¹物質構造科学研究所放射光科学第一研究系, ²東京理科大学理学部第二部, ³量子科学技術研究開発機構高崎量子応用研究所

1. 概要

本ステーションでは, KEK-PF 低速陽電子実験施設 (Slow Positron Facility, SPF)の専用リニアックで生成されたシ ョートパルスモードの短パルス低速陽電子ビーム [1] を用 いて,ポジトロニウム飛行時間測定 (positronium time-offlight (PS-TOF) [2, 3])実験を行っている。

パルス状陽電子ビームは 4.2 keV 程度に加速して Ps-TOF 測定装置(図1)まで輸送する。4.2 keV に加速するのは, 輸送途中でパルス幅が広がるのを防ぐためである。この結 果,試料位置でのパルス幅は 10 ns 程度を実現している。

このビームを試料に打ち込み,試料表面から放出される オルソポジトロニウムの飛行時間を測定する。測定チェン バ上部には,試料位置から水平距離にして 40 mm および 120 mm の位置に鉛スリットとシンチレーション検出器が 設置されており,オルソポジトロニウムがこれらの検出器 の真下で自己消滅して発生したγ線を検出する。これを電 気信号にして高速デジタイザに入力し,リニアックのタイ ミング信号をトリガーとして飛行時間スペクトルを得る。 陽電子の入射エネルギーを下げたい場合は,試料直前に接 地されたグリッドを設置するとともに試料に高電圧を印加 する。

測定試料の標準的な大きさは ↓15 mm × 2 mm (t) である。 試料の背面には電子衝撃による加熱機構が備えられてお り、2270 K 程度まで加熱することが可能である。

2. 整備開発および運用状況

2017 年度は, 角型(15 mm × 15 mm × 0.5 mm (t))の半 導体試料を取り付けるためのホルダーを用意した。

図1 Ps-TOF 実験装置 [3]

現在,本ステーションには, Ps-TOF 測定システムの他, 以下が常設されている:RHEED 装置, Ar⁺ イオンスパッ タ装置, 蒸着源用ポート (ICF70 × 1), O₂ ガス導入, 試料 温度測定用放射温度計。

3. ビームタイム利用状況

SPFでは、一台の専用リニアックで生成した低速陽電子 ビームを、輸送ラインの途中で4本(SPF-A3, A4, B1, B2)に分岐して、ビームタイム毎のタイムシェア方式で 共同利用実験に供している。このため SPF-B2 のビームタ イムは、他3本と一体で、実験審査委員会(PAC)評点に 基づいて調整される。どの課題も統計が必要な蓄積型実験 で、1課題に対して概ね4日間割り振られる。ビームタイ ム開始前の事前準備や、ビーム輸送パラメータのセットア ップは、休日関係無く、内部スタッフが対応している。十 分経験のあるユーザーは、輸送パラメータ変更などを各自 で行なうことが可能になりつつある。

2017 年度の本ステーション利用課題は,「(G)金属薄膜 を用いた低エネルギーポジトロニウムビームの生成とその 応用」,「(G)ゲルマニウム単結晶表面からのポジトロニ ウム放出プロセスの解明」である。シリコン表面からのポ ジトロニウム放出機構の解明について成果が出ており,そ の結果はすでに論文投稿済みで 2018 年度に出版の予定で ある。

4. 今後の展望

種々の物質表面からのポジトロニウム放出機構の解明を 系統的に進めていくことを目指している。一方で,ビーム タイム配分率が窮屈になり,慢性的なビームタイム不足の 問題が表面化し始めている。これを当面解決するため,ユ ーザーから試料交換や in situ 試料作製を効率化するための 試料準備チェンバの整備が強く要望されており,早急の予 算確保を目指している。根本的な解決策としては,専用リ ニアック増強による低速陽電子強度 10 倍増を進める必要 がある。

引用文献

- K. Wada, T. Hyodo, A. Yagishita, M. Ikeda, S. Ohsawa, T. Shidara, K. Michishio, T. Tachibana, Y. Nagashima, Y. Fukaya, M. Maekawa and A. Kawasuso, Eur. Phys. J. D 66, 37 (2012).
- [2] H. Terabe, S. Iida, T. Yamashita, T. Tachibana, B. Barbiellini, K. Wada, I. Mochizuki, A. Yagishita, T. Hyodo

and Y. Nagashima, Surf. Sci. 641, 68 (2015).

[3] S. Iida, K. Wada, I. Mochizuki, T. Tachibana, T. Yamashita, T. Hyodo and Y. Nagashima, J. Phys.: Condens. Matter 28, 475002 (2016).