ご挨拶

古川和朗さんの後任として,4月1日付で加速器第五研 究系研究主幹を拝命しました惠郷博文(えごうひろやす) です。2017年4月に(財)高輝度光科学研究センターよ り高エネルギー加速器研究機構へ移籍し,第五研究系にて 高周波加速の研究開発に従事しています。微力ながら,今 後は SPring-8 や KEK 入射器での経験を活かして光源型蓄 積リングと衝突型蓄積リングへ柔軟に対応できる電子陽電 子入射器として更なる安定化や高度化を進めていく所存で す。宜しくお願い申し上げます。

運転状況

1月中旬までの冬期メンテナンス作業(前号参照)を 順調に完了し、2022年1月14日からRF電子銃や加速管 群のRFコンディショニングを開始、1月31日からのPF 運転に備えて1月17日より電子陽電子入射器の本格立ち 上げを行いました。調整は順調に進み、2月4日からPF, 低速陽電子ユーザーへの利用運転を開始しました。途中、 3月10日からハイブリッド運転への切り替えに対応しな がら、3月24日予定どおりに光源系加速器へのビーム入 射を終了しました。SuperKEKBに対しては、1月24日か らDR 調整のためのRFコンディショニングを行い、2月 21日よりメインリングへの入射を開始しました。

その後,運転は順調に進んでいましたが,2月に入ると トリガー信号抜けによるクライストロン RF 出力停止やイ ンターロックで運転がダウンする現象が発症,2月17日 より頻発するようになりました。SuperKEKB ビームゲー トオープン直後に抜けることが多く,原因調査の結果,イ ベントシステム用光 FANOUT ボード (VME)の故障と判 明,予備品と交換して復旧することができました。下流側 光源加速器や測定器の運転,利用実験への影響が懸念され ましたが,大きなトラブルにならなかったのは幸いでした。 3月16日深夜23:34に発生した震度4の地震は,全クラ イストロン運転をダウンさせ,また,加速器収納トンネル の南端大型遮蔽扉のずれによるインターロックなどを誘発

図1 新開発した球形空 洞型パルス圧縮器 (試作機)

加速器第五研究系研究主幹 惠郷博文 (2022 年 4 月 8 日付け)

させたため、入射器運転が停止しました。多くの機器は安 全確認後に1時間程度で復旧できましたが、翌日、A3ユ ニットのクライストロンタンクに水漏れが発覚, RF 出力 が80%以上低下したため、交換作業が必要となりました。 しかしながら、PF停止予定の3月24日まで運転継続の要 望があり、B7ユニットによる代替加速などの調整を行う ことによってビーム品質を損なうことなく運転を継続する ことができました。A3 ユニットは PF 運転終了後にクラ イストロン交換を行い,現在は通常運転に復帰しています。 SuperKEKB に関しては、HER 入射における入射効率の改 善が急務の課題となっています。クライストロン出力位相 や入射部セプタムアングルの調整により、都度、ビーム品 質の改善対応を行ってはいますが,悪化の原因について物 理的な解釈を探究し、根治的対処を目指すべきと考えてい ます。また、SuperKEKB リングの蓄積電流増強に伴うビ ーム寿命の短時間化などに対応するため、2バンチ運転に おける安定入射の課題も取り組んで参ります。今後は T (6S)実験を目論むため、運転開始から40年を経て劣化が 進むビーム加速性能を回復することも大きな課題です。そ の解決法の一つとして、耐電力性能を向上させた新型Sバ ンド加速管に通常の2倍のマイクロ波を投入し、加速電圧 を上げる方法があります。その運転には1ユニットあたり 160 MW のパルスマイクロ波電力増強が必要ですが、クラ イストロン増設とともに、近年開発が進展した球形空洞型 パルス圧縮器を応用します。試作機での高電力試験により 良好な運転性能を持つことを確認した後、実機製作を進め てきました。今年の夏にインストールを行い、秋以降、エ ネルギー増強運転が期待されます。

人事異動

冒頭でお知らせしましたように加速器第五研究系主幹 の古川和朗さんが3月末日付でご定年退官となりました。 2012年から10年に渡って陣頭指揮を執り,五系スタッフ を取りまとめて,震災後の復興やSuperKEKBリングへの 低エミッタンス・高電荷ビーム入射の実現など数々の難局 を乗り越えて来られました。これまでの素晴らしいご功績 に感銘いたします。今後はシニアフェローとして入射器制 御とビーム品質改善にご指導,ご鞭撻いただくことになり ます。また,技師の三川勝彦さんも同日,ご定年退官され ました。制御グループに属して,スクリーンモニタやレー ザーアライメント機構,電荷計測装置において PLC 主体 の制御システム構築に数多くご貢献いただきました。4月 より KEK を離れることになりましたが,新しい門出にあ たり,ご多幸とご健勝をお祈り申し上げます。

運転状況

5月6日より PF リング,5月12日より PF-AR のビー ム入射調整を開始した。運転調整は順調に進み,PF リン グは5月10日より,PF-AR は5月16日よりトップアッ プによるユーザー運転ヘビーム供与となった。PF-AR は 6月7日から5GeV から6.5GeV へ運転エネルギーを切り 替え,PFリングは6月14日よりハイブリッド運転を行っ ている。途中,光源リングへの入射に関する特異なトラ ブルが2件あった。5月24日に入射パターン制御パネル がビーム繰り返し設定の変更を検知できず,PFリングと PF-ARの入射が一時停止した。6月19日には三重同期モ ジュールの同期外れが生じ,蓄積電流の積み上げが停滞し て定格の450mAまで蓄積されなくなったため,ゲート幅 を調整して回復させた。

SuperKEKB においては Off-momentum での物理運転を5 月 11 日に終え, 5 月 16 日よりビーム衝突点の β 関数(β^{*}) を1.0 mmから0.8 mmに絞り、ルミノシティ向上を目指 す試験運転調整を行った。5月26日より再びβ_v*=1.0 mm に戻して電流増強による運転に切り替えてビーム入射を行 った。リングのオプティクス補正に合わせて、LER 3 nC 2 バンチ, HER 1.3 nC シングルバンチで入射調整し, LER エミッタンス $\varepsilon_x/\varepsilon_v = 119/4 \text{ mm}$ (MR-BT でのワイヤースキ ャナ測定値), HER エミッタンス $\varepsilon_v/\varepsilon_v = 21/20 \text{ mm}$ となり, エミッタンスの大幅改善と過去最高となる入射効率90% を達成した。運転繰り返しを 12.5 Hz から 25 Hz に変更し てもエミッタンスは良好であった。また、この時期、入射 器内の VSWR ダウン頻度も最小状態を維持することがで き,入射器運転は安定に推移した。しかしながら,電力制 限のため、6月22日に SuperKEKB メインリングの運転は 停止となった。図1に運転停止までの入射状況の推移を示 す。

途中, A_1(A) ユニットのクライストロンモジュレータ 用インバータ充電機が故障し,電流過多インターロックで 入射中断が多発したが,予備機と交換にて復旧した。今期 よりクライストロン関連のインターロック発生時にはクラ イストロンギャラリー内に設置したモジュレータ監視カメ ラによってコントロール室から遠隔にて状態確認ができる ようになった。軽微異常に対して遠隔リセットを行い,復 帰対応時間の短縮が可能となった。なお,遠隔リセットが できない重故障や異常の場合は,これまで通り現場確認に て対処する。

また,日時は異なるが2つの加速ユニット(AC_12, AC_22)で経年劣化による加速管カプラー部から冷却水漏

加速器第五研究系研究主幹 惠郷博文 (2022 年 7 月 1 日付け)

れが発生した。この場合,ユニット全体を運転停止しなけ ればならず,1ユニットあたり約150 MeV のエネルギー 減となるが,スタンバイユニットを代用することによりビ ーム運転に支障を与えることはなかった。しかしながら, 止水処置には,排水・水路乾燥作業,リキッドシール塗布, 乾燥後の通水確認などの工程を踏む必要があるが,2週間 毎のメンテナンス時間内で対応しなければならないため, 復旧には1ヶ月を要する。劣化が大きく,上記の処置で水 漏れ修理ができない場合は加速管の交換となるため,今後, 計画的な新型加速管の調達が必要である。

5月後半より気温が上昇,1日の気温差が大きくなって 各機器の動作へ影響した。入射ビームの軌道変動やエミッ タンス劣化が大きくなり,入射効率が悪化した。そのため, 3セクターから5セクターのクライストロン RF 出力の位 相調整や,バンチ電荷量と均等化を図るA,Bセクター調 整を,入射の合間に手動にて行い,ビーム品質改善に努め た。ただし,連続入射中は,パラメータ変更によるビーム アボートを引き起こす危険性があるため,これらの手動調 整作業を行うことができない。機械学習などを導入した自 動制御の高度化が今後の課題である。

一方, M2D系統(陽電子生成部FCなどを冷却)の冷 却水温制御用二方弁が故障し,一時的に水温が30℃か ら45℃へ上昇したため,インターロックが発生した。二 方弁および三方弁バルブを共に手動調整にて全開(冷却 能力最大)させて対処した。M2A系統(加速管AC_16, AC_17, AC_18およびSB_2用冷却水)の水温不安定も発 生しており,今後,施設側にて冷却系異常の調査と修理が 必要である。それ以外にも空調機故障によるRF電子銃用 レーザーハット内温度,定盤温度の変化が大きく,これも 手動にて状態調整中である。しかしながら,SuperKEKB のルミノシティ向上運転を優先させるため,5月25日,6 月8日,6月15日の定期メンテナンスを中止して6週間 連続運転となり,施設側トラブルは未対応の状態である。 暫定対処としてアラーム監視を強化して,状態変化時への 対応に備えている。

入射器の運転において重篤なトラブルが 5 月 30 日に発 生した。入射器ネットワークのコアスイッチ4台中1台 に不調が発生し、一部の電磁石電源、SuperKEKB 制御ネ ットワーク、入射器 NAS 間の通信が不通となった。これ により SuperKEKB は運転できなくなったが、PF リングと PF-AR はトップアップを継続できていた。該当の電磁石 電源配下の電源と該当するコアスイッチを再起動させて復 旧した。原因はコアスイッチのファームウェアの不具合で 運転状況によってメモリにスローリークが発生し、メモリ 使用率 97% 超となってネットワーク通信が不良となる。6 月 13 日にも同様の不具合が別のコアスイッチで発生した ため、再起動で対応、夏期保守期間中にファームウェアの アップデートによる改修を行う予定である。

6月18日午後,低速陽電子テストホールでの機器ベー キング作業の際に漏電が3度発生,2回目の事象により J-Arc 部とCセクターの電磁石電源のブレーカーがオフと なって1時間以上入射器の運転が停止した。入射器運転ス タッフが通常感知していない場所でのヒーター線露出によ る地絡が原因であったため,原因究明が遅れた。今後,再 発防止の施作を進めると共に,入射器棟内の各作業,機器 運転状態の情報共有と連絡体制の強化に努めていく。

図1 SuperKEKB リング (HER, LER) へのビーム入射状況 (2022b)。QCSFW135, FW135, BP diamond: バックグランド評価用放射線 モニター。

運転状況

PFリング, PF-ARのトップアップビーム入射によるユ ーザー運転に関して, PF-ARは7月1日に運転終了, PF リングは7月8日に運転を終了した。SuperKEKBは電力 制限のため,6月22日にメインリングの運転を停止した。 7月8日から入射器スタディと機器データ取りを行い,7 月12日に入射器の運転を終えた。7月12日より9月15 日まで夏期保守期間となり,定例の機器メンテナンスと一 部機器のアップグレードを行なった。9月16日より入射 器の運転を開始,現在はPFリングとPF-ARへのビーム入 射に向けた調整運転を行なっている。SuperKEKBは長期 改修期間(LS1)に入り,来年の秋まで運転を行わない。

加速電界増強ユニット

加速管アップグレード計画の一つであるビームエネルギ ー増強ユニットの構築として、AC_44 ユニットを図1の 加速管4本駆動システムから加速管2本駆動システムに改 造した。このユニットには新型Sバンド加速管が昨年設 置されており、今回の改造によって従来の2倍のRFパワ ーとなる80 MW 駆動が可能となり、約1.4倍の加速電圧 増強となる。そのため、クライストロンとパルス圧縮器の 増設と導波管立体回路の改造を行なった。新設のパルス圧

図1 AC_44 ユニット増強改造

加速器第五研究系研究主幹 惠郷博文 (2022 年 10 月 3 日付け)

縮器は、従来の SLED タイプではなく、新たに開発を進め てきた新基軸の球形空洞型パルス圧縮器(Spherical-Cavitytype Pulse Compressor: SCPC)である(関連記事 PF ニュー ス 40-1 号)。量産型実機初号器であり、事前に高電力コ ンディショニングを行なって動作確認をした圧縮器であ る。SCPC は図 2 に示すように SLED とは大幅に異なる構 造を持つ。SLED は 2 つの共振空洞を要するのに対して、 SCPC は 1 つの球型共振空洞から成り、この球形空洞は高 い無負荷 Q 値を持つ TE₁₁₂ モードで共振する。表 1 に高 周波性能を示す。運転条件を考慮して高周波特性は KEK-SLED と同じ値になるように設計している。SLED では 2

図2 パルス圧縮器新旧比較(上:現行 SLED 下:新型 SCPC)

表1 SCPC 高周波特性

周波数 [MHz]	2856
無負荷 Q	100,000
ß	6.4
ピークパワー圧縮率	6.2
空洞共振モード	Spherical TE ₁₁₂

空洞への RF パワー振り分けに 3 dB ハイブリッドを用い るが,SCPC は 3 ポート導波管偏極器で球形空洞に RF パ ワーを供給する。入口の矩形 TE₁₁ モード高周波は円偏向 TE₁₁ モードに変換されて球形空洞内に回転する TE₁₁₂ モー ドを励起する。この回転状態は,偏向面が直交し,位相が 90°異なる 2 つの TE₁₁₂ モードの縮退状態の励起と見なす ことができ,あたかも 2 空洞あるかのような動作をする。 改造を行った AC_44 ユニットは高電力試運転と周波数調 整を行なって,今後ビーム運転へ供与していく。

ビーム研究

入射器には J-arc と呼ばれている半円(180° 偏向アー ク)のビームトランスポート部がある(図3)。これは, KEKB 計画用入射器としてエネルギーを 8 GeV に増強す る際,必要量の増設加速管を収容する A, B, C セクター 建設に伴って設けられたものである。この J-arc は, A, B セクターで生成された 1.5 GeV 電子ビームの質を低下させ ないように Achromatic (横方向エミッタンス保存: R₁₆=0, R₂₆=0) かつ Isochronous (ビームのバンチ長保存: R₅₆=0) の条件を満たすように建設された。しかし、SuperKEKB では,加速管のウェイク場による横方向エミッタンスの 劣化を防ぐため、バンチ長を4psまで短くする。そのた め、J-arc の Isochronous 状態を破り、B セクターの加速管 を用いてバンチ内エネルギー広がりを大きくし, 且つ, R₅₆=0.3 m としてバンチ長圧縮運転を行なっている。最近 の SuperKEKB へのビーム入射状況解析から,入射路 (Beam transport, BT) で観測されるビームエミッタンス劣化は, J-arc 内バンチ長圧 縮時の Coherent synchrotron radiation (CSR)発生が原因である可能性が示唆されている。CSR 効果は R₅₆ 設定値にも依存するので、シミュレーション解 析とビームスタディを進めながらビーム入射に最適なバン チ長圧縮条件と運転パラメータを求めていく。参考として 入射器スタディで R₅₆の値を 0.3 m から 0 m に変更した時 の規格化エミッタンスの変化を図4に示す。この変更によ り HER ビームのエミッタンスが変化し、PF リングへのビ ームエミッタンスは改善される様子がわかる。

図 4 HER-BT と PF-BT におけるビーム規格化エミッタンスの比較(PF-BT データ提供:下崎義人氏) 赤矢印:J-arc R₅₆変更(0.3 m→0 m)

運転状況

PF リングに対して 10 月4日よりビーム入射調整を始 め、10月7日からユーザー運転を開始した。PF-ARは10 月12日より5GeVのエネルギー運転調整を始め、10月 17日からユーザー運転を行った。節電のため、25 Hz 運転 (定格 50 Hz) であったが、ユーザー運転中の PF リングお よび PF-AR への入射は各 1 Hz であるため、運転モードを シェアしてRF電子銃の高電荷ビーム出力試験(SuperKEKB HER 用)や陽電子生成の調整試験(LER 用)も並行して 行なった。SuperKEKB は長期改修期間(LS1)に入り,来 年の秋までビーム入射運転を行わないため、これらの試 験ビームは入射器内のダンプに廃棄する。PF-AR5GeVト ップアップ入射と PF リング同時入射のスタディを 11 月 7日に行い、全リングに対して同時トップアップ入射が可 能であることを確認した。11月8日から PF-AR への 6.5 GeV 運転調整が行われ、11月11日から12月5日まで6.5 GeV のビーム入射を行なった。PF リングは 12 月 2 日より ハイブリッド入射に切り換えて12月26日まで運転し、2 日間の入射器調整後,12月28日に2022年度第2期の運 転を終了した。今期は光源リング主体の調整ができたため, 非常に安定したビーム入射となった。しかしながら、入射 器が原因となる入射中断があり(約610分:集計期間10 月4日-12月15日), パルスマグネット制御プログラム 関連のトラブルが 75% を占めた。対策として冬期保守期 間以降にパルスマグネットのデータ収集や制御プログラム の改良を行う予定である。

加速電界増強ユニット

夏期保守期間にビームエネルギー増強のため,AC_44 ユニットを改造した。加速管4本駆動システムから加速管 2本駆動システムとなっており,従来の2倍となる80 MW 駆動によって,このユニットは約1.4倍の加速電圧増と なる。新開発の球形空洞型パルス圧縮器(Spherical-Cavitytype Pulse Compressor: SCPC)は周波数調整後,事前試験 通りに問題なく高電力運転ができた。図1はAC_44ユニ ットを改造前と同じ定格電力で調整運転した際、従来型 のAC_37ユニット(加速管4本)と比較したエネルギーゲ イン測定データである。AC_44ユニットにおいても定格 電界 20MV/m のビーム加速ができていることを確認した。 ただし,加速管下流に設置したダミーロード(高周波吸収 装置)内に損傷があることが判明したため,運転電力の増 強はダミーロードの改修後に行う予定である。

加速器第五研究系研究主幹 惠郷博文 (2023 年 1 月 5 日付け)

ビーム研究

RF 電子銃の高電荷ビーム出力試験(HER 用)では電子 銃の陰極に照射するレーザー出力量と2ラインのレーザー 合成の調整にて,電子銃直後で5nCバンチのビーム出力 ができた。入射器内のビーム軌道調整を行なった結果,入 射器出口で7GeV 3.9nCとなる設計電荷量のビーム加速に 成功した(図2)。ただし,現状では電荷量の変動が大きく, エミッタンスも要求値まで到達できておらず,今後調整を 深めていく必要があるが,過去最大の電荷ビーム生成を達 成できたことは大きな前進である。大電荷ビーム試験後, バンチの高電荷,高繰り返し運転によるレーザー照射用窓 の汚染に関するスタディを実施した。

J-arc に 設 置 し て い る 8 電 極 BPM (Beam Position Monitor) とスクリーンモニタとの同期測定を行い,スク リーンで得られたビーム位置・形状と 8 電極 BPM で得ら れたデータ解析結果との相関を調べた。この BPM で得ら れるビーム位置データはスクリーン位置と線型関係を持 ち,また,四重極モーメントから算出したビームサイズの 変化は,スクリーンモニタで得た値と同等であり,定量化 が可能となれば,2バンチ運転で非破壊のバンチ独立計測 が見込める。

10月31日から11月6日は SuperKEKB の電子ビーム伝 送ライン(BTe)を用いたビームスタディを行なった。3 セクターから5セクターにかけて電子ビーム軌道にバンプ を与え,加速管通過時に生じるウェイク場の影響を軽減 させてエミッタンスを最善化させる試験を行なった。J-are や BTe の第3アーク入口に設置した放射光モニターを使 用してビーム位置や形状、エネルギー分散とバンプ量の相 関を確認し、ビーム非破壊計測によるビーム軌道安定化フ ィードバック制御の見通しを得た。BTe においても適正な バンプ軌道を作ることによって CSR (Coherent Synchrotron Radiation)によるエミッタンス増大の抑制が確認された。 CSR は大きなビーム劣化を引き起こす要因となっており、 今後、シミュレーションと比較してビーム品質改善手法の 確立を図る。バンチ電荷量を変えて RF 位相と水平方向最 小エミッタンスの電荷量依存性も測定した。電荷量ととも にエミッタンスは悪化していくが、RF 位相が基準値より もプラス方向で CSR の影響と思われる効果は小さく、マ イナス方向で大きくなる傾向あった。また、ビームエネル ギー変化によるエミッタンスへの影響も確認した。通常 運転で想定される -0.12% から +0.39% の変化量において, 垂直方向への影響はなく、水平方向は 15% 程度変化する が、CSR などの要因によるエミッタンス増大に比べると 小さかった。

このように光源加速器への安定ビーム入射を行うと共に ビーム性能向上に向けた入射器改造やビーム解析調整を進 めている。

図2 RF 電子銃 高電荷バンチビーム出力試験(4 nC ビーム生成) 上:水平方向軌道,中:垂直方向軌道,下:バンチ電荷量 左端: RF 電子銃出口,右側黄色点:入射器出口