Structural dynamics of nano-/bio-molecules driven by a femtosecond XUV/XFEL pulse

Kaoru Yamazaki

Institute for Materials Research, Tohoku University, Sendai, Japan


Highly excited and/or ionized molecules generated by the irradiation of femtosecond XUV/XFEL pulse undergoes exotics chemical reaction dynamics. In this talk, I will discuss my recent theoretical works on the XUV/XFEL induced structural dynamics of nano-/bio-molecules as follows:

1. Ultrafast nonadiabatic cascade and subsequent photofragmentation of XUV excited caffeine molecule [1]

We investigated the XUV driven femtosecond dynamics of caffeine as a model of prebiotic molecule. We observed a decay of excited cationic states with a time constant of 40 fs *via* femtosecond XUV-pump–IR-probe experiments. Guided by *ab-initio* many-body theory, this timescale is interpreted in terms of a non-adiabatic cascade *via* 10^2 highly correlated states (Fig. 3). These results show that both nonadiabatic coupling and electron correlation are the keys for ultrafast reaction dynamics in the highly-correlated electronic excited states.

2. XFEL induced Coulomb explosion of fullerene C₆₀ and its application to imaging of the mid-IR induced coherent vibration [2,3]

We found that the time series of the angular anisotropy $\beta(t)$ of fast C⁺ and C²⁺ fragments of C₆₀⁶⁰⁺ produced by such an XFEL pulse reflects the instantaneous structure of C₆₀ vibrationally excited by IR pulses (Fig. 2). The phases and amplitudes of excited vibrational modes and the coupling between excited modes can be successfully extracted from the expansion of $\beta(t)$ in terms of vibrational modes. This *proof-of-principle* simulation clearly demonstrates that various information of the structures and reaction dynamics of large clusters or biomolecules can be retrieved by decomposing the experimentally determined $\beta(t)$ into vibrational modes.

Fig. 1. Nonadiabatic cascade of caffeine [1]

Fig. 2. XFEL Colomb explosion imaging of the mid-IR induced coherent vibration of C_{60} [3]

References (*Corresponding author):

- [1] A. Marciniak, <u>K. Yamazaki</u>* et al., J. Phys. Chem. Lett. 9, 6927-6933 (2018).
- [2] K. Yamazaki et al., J. Chem. Phys. 141, 121105 (2014).
- [3] K. Yamazaki * et al., J. Chem. Phys. doi: 10.1063/1.5115072 (2019), Editor's pick.