Physical properties and electronic structure of antiferromagnet URhIn₅

¹Yuji Matsumoto, ²Yoshinori Haga, ²Naoyuki Tateiwa, ²Etsuji Yamamoto and ³Zachary Fisk

¹Faculty of Science, University of Toyama ² Advanced Science Research Center, Japan Atomic Energy Agency ³ University of California, Irvine

 RTX_5 family (R = rare earth and actinide T = transition metal, X = In, Ga tetragonal HoCoGa₅ type structure) is one of the most studied system in the strongly correlated f electron system. In R = actinide, PuCoGa₅ which is heavy fermion superconductor with much higher transition temperature T_C = 18 K is intensively studied [1]. In R = U, UTGa₅ compounds only have been reported and they exhibit antiferromagnetism or enhanced Pauli-paramagnetism [2, 3]. There was no UTIn₅ compounds so far. Therefore we have searched for UTIn₅ compounds. As a result, single crystals of URhIn₅ have been obtained [4].

We have measured the magnetic properties, electrical resistivity and specific heat of URhIn₅. URhIn₅ is an antiferromagnet with antiferromagnetic transition temperature $T_N = 98$ K. The moderately large electronic specific heat coefficient $\gamma = 50$ mJ/K² mol demonstrates the contribution of 5*f* electrons to the conduction band. On the other hand, magnetic susceptibility in the paramagnetic state roughly follows a Curie-Weiss law with a paramagnetic effective moment corresponding to a localized uranium ion. The crossover from localized to itinerant character at low temperature may occur around the characteristic temperature 150 K where the magnetic susceptibility and electrical resistivity show a marked anomaly.

We have also performed the de Hass- van Alphen (dHvA) effect measurement of URhIn₅ to obtain its electronic structure [5]. By analyzing the dHvA oscillations, existence of two Fermi surfaces was concluded.

Reference:

- [1] J. L. Sarrao, et al., Nature 420, 297 (2002).
- [2]N. O. Moreno, et al., Phys. Rev. B 72, 035119 (2005).
- [3]S. Ikeda, et al., Physica B 359-361, 1039 (2005).
- [4] Y. Matsumoto, et al., Phys. Rev. B 88, 045120 (2013).
- [5] Y. Matsumoto, et al., JPS Conf. Proc., 3, 011097 (2014).