(12)公開特許公報(A)

(11)特許出願公開番号

特開2010-38791

(P2010-38791A) (43) 公開日 平成22年2月18日 (2010.2.18)

(51) Int.Cl.		FΙ			テーマコード(参考)
GO1B 11/24	(2006.01)	GO1B	11/24	А	2F065

審査請求 未請求 請求項の数 5 OL (全 14 頁)

(21) 出願番号 (22) 出願日	特願2008-203494 (P2008-203494) 平成20年8月6日 (2008.8.6)	(71) 出願人	504176911 国立大学法人大阪大学
		(71) 出願人 (74) 代理人 (74) 代理人 (74) 代理人	大阪府吹田市山田丘1番1号 504151365 大学共同利用機関法人 高エネルギー加速
			器研究機構 茨城県つくば市大穂1番地1 100074561
			弁理士 柳野 隆生
			100124923 弁理士 森岡 則夫
			100141874 弁理士 関口 久由
			最終負に続く

(54) 【発明の名称】 光路長の自律校正を用いた法線ベクトル追跡型超精密形状測定方法

(57)【要約】

(19) 日本国特許庁(JP)

【課題】

計測点座標と法線ベクトルの計測値から被測定物の表 面形状を導出する法線ベクトル追跡型超精密形状測定方 法において、現状の2軸2組のゴニオメータと1軸直進 ステージの装置構成を変えることなく、ある測定手順を 付加するだけで、自律的に光路長Lを校正によって決定 することが可能な光路長の自律校正を用いた法線ベクト ル追跡型超精密形状測定方法を提供する。

【解決手段】

各計測点毎に2軸2組のゴニオメータから得られる4 つの角度データと1軸直進ステージから得られる1つの 距離データとを取得し、計測点の数だけの計測値セット から形状導出アルゴリズムPにより形状を導出する際に 、光路長Lを変数として複数の形状P(L)を導出し、 形状変化の収束を利用して真の光路長L_cと収束形状P (L_c)を算出する。具体的には、形状残差の収束性を 見ながら二分法により光路長を決定する。 【選択図】 図5

【特許請求の範囲】

【請求項1】

少なくとも2軸2組のゴニオメータと、その回転中心間の距離を変える1軸直進ステージとで構成し、1組のゴニオメータは試料系を構成し、その可動部に被測定物を保持し、 もう1組のゴニオメータは計測系を構成し、その可動部に光源と光検出器を設け、光源から出射された計測ビームと被測定物表面で反射された反射ビームが完全に重なるように、 2軸2組のゴニオメータを制御するとともに、光検出器と被測定物表面間の光路長しが一 定になるように1軸直進ステージを制御して、被測定物表面の任意計測点の法線ベクトル を計測することから形状を求める法線ベクトル追跡型超精密形状測定方法において、各計 測点毎に、2軸2組のゴニオメータから得られる4つの角度データと1軸直進ステージか ら得られる1つの距離データとを取得し、これら計測点の数だけの計測値セットから形状 導出アルゴリズムPにより形状を導出する際に、光路長しを変数として複数の形状P(し)を導出し、絶対形状は不変であることを原理として、光路長し_cと収束形状P(し_c)を 算出することを特徴とする光路長の自律校正を用いた法線ベクトル追跡型超精密形状測定 方法。

(2)

【請求項2】

光路長をLとしたときの形状P(L)と光路長を Lだけ微小変化させたときの形状P (L+ L)又はP(L- L)とを比較し、形状変化が所定範囲内になるときのLの値 を真の光路長L_cとし、収束形状P(L_c)を決定する請求項1記載の光路長の自律校正を 用いた法線ベクトル追跡型超精密形状測定方法。

【請求項3】

光路長Lの値を任意に変化させて L変位前と変位後の形状導出を行い、複数の形状差 のデータを作成し、複数の形状差のデータの中の任意の座標において、Lの値と形状差を パラメータとした関数を導出し、その関数の極小値を計算で求め、形状差が最小になると きのLの値を真の光路長L_cとし、収束形状P(L_c)を決定する請求項1記載の光路長の 自律校正を用いた法線ベクトル追跡型超精密形状測定方法。

【請求項4】

光路長Lの近似値をL₀に設定するとともに、真の光路長L_cが閉区間[L₀- L,L₀ + L]に含まれるように変位 Lを設定し、この閉区間内で形状P(L)を導出し、区 間の中間の形状に対する区間の両端の形状の差をそれぞれ計算し、この形状差の小さい方 の半区間を新たな区間とする二分法により、形状差が所定範囲内になったときの区間中間 の値を真の光路長L_cとし、収束形状P(L_c)を決定する請求項1記載の光路長の自律校 正を用いた法線ベクトル追跡型超精密形状測定方法。

【請求項5】

光路長 L の近似値 L₀を、誤差を含む実測値とし、変位 L を光路長の計測誤差よりも 大きな値に設定してなる請求項 4 記載の光路長の自律校正を用いた法線ベクトル追跡型超 精密形状測定方法。

r	玜	冏日	ወ	詳	细	な	韺	冏日	1
L	九	ΡД	0)	n +	'nЩ	Ά.	μЛ	ΗД	

【技術分野】

[0001]

本発明は、光路長の自律校正を用いた法線ベクトル追跡型超精密形状測定方法に係わり、更に詳しくは被測定物表面における有限数の離散した計測点の座標と法線ベクトルの実測値を用いて被測定物表面の全体形状を測定する法線ベクトル追跡型超精密形状測定方法において、光路長を自律校正することにより被測定物表面の全体形状を超精密に測定する技術に関するものである。

【背景技術】

【 0 0 0 2 】

X 線自由電子レーザーや波長13.5nmの極紫外光を用いたリソグラフィー技術から 50

10

20

要請される次世代高精度光学素子の製作には、非球面で形状誤差を1~0.1nmRMS の精度で自由曲面の形状を計測することが不可欠である。このようなX線光学素子、代表 的にはX線用反射ミラーは、10~500cmのサイズを有し、この反射面全体にわたっ て前述の形状誤差を達成しなければならない。空間波長1mm以下の表面粗さの計測手段 として、原子レベルの分解能をもつプローブ顕微鏡があり、現状でも要求精度を満たして いるが、一度に計測できる範囲は約50µm四方と非常に狭く、また計測時間も長いので 、被測定物全体の形状を計測するには全く不向きである。一方、空間波長1mm以上の形 状計測技術は、被測定物に1mm 程度の細いレーザービームを照射して、得られる反射 光のズレを測定して被測定物表面の傾斜角を求める、LTP(Long Trace Profiler)が ある。これは、5×10⁻⁷radRMSの測定精度(3nmRMS)が得られるが、測定 範囲は±5mradに限られて2次元形状測定である。また、点光源干渉法によって、0 .3nmRMSの測定精度が得られているが、点光源からの球面波を参照するため、原理 上非球面の形状計測が困難である。

(3)

【0003】

このような従来の課題を解消する方法として、特許文献1に記載されるような超精密形 状測定方法が提案されている。この形状計測法の原理は、レーザーの直進性を活用し、光 源から出射されたレーザービームが被測定物表面に反射されて、光源の位置にある検出器 の中心に戻るように、即ち入射ビームと反射ビームが完全に重なるように2軸2組のゴニ オメータを、また検出器と被測定物表面間の光路長Lを一定になるように光軸方向の1軸 直進ステージを制御して、被測定物表面の任意計測点(座標)の法線ベクトルを計測するこ とから形状を求めるものである(図1参照)。ここで、計測点の座標とは、最初の計測点 への光線ベクトルに直交する試料面上の座標である。

[0004]

そして、計測点座標と法線ベクトルの計測値から被測定物の表面形状を導出する方法として、特許文献1にも記載された傾斜角積分法と、最近本発明者らによって提案されたフーリエ級数展開最小二乗法とがある。傾斜角積分法は、各計測点の表面スロープとその1階積分により各計測点の高さを求めることによって形状を算出する方法であり、フーリエ級数展開最小二乗法は、被測定物表面における有限数の離散した計測点の座標と法線ベクトルの実測値を用いて、フーリエ級数展開によって表された近似曲面が、各計測点での誤差が最小になるように次数と係数を最適化する新規な形状導出アルゴリズムによって被測定物表面の全体形状を超精密に測定する方法である。これらの測定方法をまとめて法線ベクトル追跡型超精密形状測定方法と称することにする。

[0005]

被測定物の表面形状は、前述の法線ベクトル追跡型超精密形状測定装置の2軸2組のゴニオメータのロータリーエンコーダの出力と、検出器と被測定物表面間の光路長Lによって決定される。ここで、ロータリーエンコーダの出力は要求精度で容易に読み取ることができるが、光路長Lを必要な精度で測定することは困難であり、現状では50µm程度の誤差を有している。この光路長Lの絶対測定における誤差は、被測定物の表面形状に無視できない形状誤差として影響を及ぼすことになる。つまり、表面形状の測定精度を上げようとすれば、光路長Lの測定精度を上げることが必要である。相対距離はレーザー測長機によってnmオーダーで測定することが出来るが、3次元空間の任意の点の絶対距離をnmオーダーで超精密に測定する方法は現状ではない。

【特許文献1】特許第3598983号公報

【発明の開示】

【発明が解決しようとする課題】

[0006]

高精度光学素子の製作に必要な自由曲面を形状精度0.1 n m R M S で測定できる形状 測定方法を確立することは急務である。法線ベクトル追跡型超精密形状測定方法は、被測 定物に対する大きさの制限が少なく、基準面を用いず、非接触で測定することができる等 の利点を備えており、この測定方法でネックとなっていた光路長 L の高精度計測の問題を 10

20

解消すれば、本測定方法のブレークスルーを図ることが可能である。 【0007】

そこで、本発明が前述の状況に鑑み、解決しようとするところは、計測点座標と法線ベクトルの計測値から被測定物の表面形状を導出する法線ベクトル追跡型超精密形状測定方法において、光路長Lを測定するために、新たな測長機を導入することなく、現状の2軸2組のゴニオメータと光軸方向の1軸直進ステージの装置構成を変えることなく、ある測定手順を付加するだけで、自律的に光路長Lを校正によって決定することが可能な光路長の自律校正を用いた法線ベクトル追跡型超精密形状測定方法を提供する点にある。

(4)

【課題を解決するための手段】

【 0 0 0 8 】

本発明は、前述の課題解決のために、少なくとも2軸2組のゴニオメータと、その回転 中心間の距離を変える1軸直進ステージとで構成し、1組のゴニオメータは試料系を構成 し、その可動部に被測定物を保持し、もう1組のゴニオメータは光学系を構成し、その可 動部に光源と光検出器を設け、光源から出射された計測ビームと被測定物表面で反射され た反射ビームが完全に重なるように、2軸2組のゴニオメータを制御するとともに、光検 出器と被測定物表面間の光路長しが一定になるように1軸直進ステージを制御して、被測 定物表面の任意計測点の法線ベクトルを計測することから形状を求める法線ベクトル追跡 型超精密形状測定方法において、各計測点毎に、2軸2組のゴニオメータから得られる4 つの角度データと1軸直進ステージから得られる1つの距離データとを取得し、これら計 測点の数だけの計測値セットから形状導出アルゴリズムPにより形状を導出する際に、光 路長しを変数として複数の形状P(し)を導出し、絶対形状は不変であることを原理とし て、光路長しっと収束形状P(しっ)を算出することを特徴とする光路長の自律校正を用い た法線ベクトル追跡型超精密形状測定方法を構成した(請求項1)。

【0009】

これまで提案してきた法線ベクトル追跡型超精密形状測定方法及び測定装置は、2軸2 組のゴニオメータと光軸方向の1軸直進ステージを同時5軸制御することによって、高精 度に形状計測するものである。このとき、表面形状再現に必要である法線ベクトルの方向 は2軸2組のゴニオメータで精確に測定できるが、光路長しの絶対値は十分な精度で直接 測定することは不可能であった。本発明では、複数の光路長し₁~し_nにおける形状測定を 実施することによって、真の形状に近ければ微小な しの変化すなわちし_i± しに対し て形状が不変であることを原理として、し_i± しにおける表面形状を求め、その形状 残差が最小となる光路長しが真の形状に近いと判断して形状を決定する。

[0010]

具体的には、光路長をLとしたときの形状P(L)と光路長を Lだけ微小変化させた ときの形状P(L + L)又はP(L - L)とを比較し、形状変化が所定範囲内になる ときのLの値を真の光路長L_cとし、収束形状P(L_c)を決定する(請求項2)。 【0011】

あるいは、光路長Lの値を任意に変化させて L変位前と変位後の形状導出を行い、複数の形状差のデータを作成し、複数の形状差のデータの中の任意の座標において、Lの値と形状差をパラメータとした関数を導出し、その関数の極小値を計算で求め、形状差が最小になるときのLの値を真の光路長L_Cとし、収束形状P(L_C)を決定することも好ましい(請求項3)。

【0012】

また、光路長Lの近似値をL₀に設定するとともに、真の光路長L_cが閉区間[L₀- L,L₀+ L]に含まれるように変位 Lを設定し、この閉区間内で形状P(L)を導出し、区間の中間の形状に対する区間の両端の形状の差をそれぞれ計算し、この形状差の小さい方の半区間を新たな区間とする二分法により、形状差が所定範囲内になったときの区間中間の値を真の光路長L_cとし、収束形状P(L_c)を決定することがより好ましい(請求項4)。

【0013】

50

30

40

この場合、光路長Lの近似値L。を、誤差を含む実測値とし、変位 Lを光路長の計測 誤差よりも大きな値に設定してなるのである(請求項5)。 【発明の効果】

[0014]

以上にしてなる本発明の光路長の自律校正を用いた法線ベクトル追跡型超精密形状測定 方法は、光路長しを測定するために、新たな測長機を導入することなく、現状の2軸2組 のゴニオメータと光軸方向の1軸直進ステージの装置構成を変えることなく、自律校正の 手順を付加するだけで、光路長Lの絶対値測定を行うことなく、フーリエ級数展開最小二 乗 法 な ど の 形 状 導 出 ア ル ゴ リ ズ ム P を 用 い て 被 測 定 物 の 表 面 形 状 を 精 密 に 測 定 す る こ と が 可能となる。

[0015]

具体的には、光源から出射された計測ビームと被測定物表面で反射された反射ビームが 完全に重なるように、2軸2組のゴニオメータを制御するとともに、光検出器と被測定物 表面間の光路長しが一定になるように1軸直進ステージを制御して、被測定物表面の任意 計測点の各計測点毎に、2軸2組のゴニオメータから得られる4つの角度データと1軸直 進ステージから得られる1つの距離データとを取得し、これら計測点の数だけの計測値セ ットから形状導出アルゴリズムPにより形状を導出する際に、自律校正により真の光路長 L。を見つけ出し、 収束形状P(L。)を算出することができるのである。 測定装置を駆動 して計測点の数だけの絶対計測値セット又は差分計測値セットを取得できれば、あとは数 値計算処理だけである。

[0016]

つまり、本発明の光路長の自律校正を用いた法線ベクトル追跡型超精密形状測定方法を 用いれば、測定時間は増加するが、装置構成を変えないため、コストをかけずに、従来不 可能であった光路長Lの絶対値を算出することが可能となり、その正確な光路長L。を用 いて形状導出を超精密に行うことができる。これまで、本計測法は、光路長Lが十分な精 度で測定できていないため、形状の測定精度が光路長Lの測定精度で支配されていた。本 発明により、高精度に光路長しの絶対値測定が可能になったことから、形状測定そのもの の高精度化のブレークスルーを達成できた。

【発明を実施するための最良の形態】

[0017]

次に、添付図面に示した実施形態に基づき、本発明を更に詳細に説明する。図1及び図 2 は、本発明の測定方法における法線ベクトルを計測する原理を示し、光の直進性を利用 して被測定物1の表面上における各点の法線ベクトルを測定するのである。具体的には、 2 軸 2 組のゴニオメータと、その回転中心間の距離を変える1 軸の直進運動(Y 軸)とで 構 成 さ れ て い る 。 1 組 の ゴ ニ オ メ ー タ は 試 料 系 2 を 構 成 し 、 そ の 可 動 部 に 被 測 定 物 1 を 保 持し、もう1組のゴニオメータは光学系3を構成し、その可動部に光源と検出器Dを設け ている。光源と検出器 Dの動きは一体化している。具体的な測定装置の構造は特許文献1 に示されている。

[0018]

40 本実施形態における被測定物の表面形状の測定方法は次の通りである。計測中、試料系 2 の 2 軸 ゴニオメータの回転中心は不動であり、この回転中心の Y 軸座標 R 、は一定の値 をとる。更に、計測中、被測定物表面から検出器Dまでの光路長Lが一定になるように、 1 軸の直進運動を用いて調整する必要がある。先ず、2 軸 2 組(,)、(,)の回 転運動により、計測基準点A。の法線ベクトルを計測する。それには、被測定物表面上の 計測基準点A。への入射光とその点での反射光とが重なるように調整する。そのとき、そ の点の法線ベクトルは光線の方向と等しくなる。最初の計測基準点A。を原点(0,0, 0)とし、法線ベクトルと一致した光線の方向と、光源の位置調整用座標系である Y 軸を 一致させ、更に、その軸上に試料系2の回転中心を設定する。そのときの光学系3の位置 座 標 を T 。(0 , Y 。, 0)、 測 定 系 の Ζ 軸 周 り と Χ 軸 周 り 、 及 び 試 料 系 2 の Ζ 軸 周 り と Χ 軸周りの角度を(,)=(0,0)、(,)=(0,0)とする。試料系2の回転

10

中心の座標は S₀(0 , R_y , 0)である。そして、光路長 L と、計測基準点 A₀と回転中 心のずれ R_yを別の測定機を用いて測定する。 -

【 0 0 1 9 】

次の計測点A₁(x,z)の法線ベクトルを求めるために、2軸(,)の回転運動でA₁近傍に入射光が来るように調整する。それから、2軸(,)の回転運動によって、入射光と反射光を一致させ、4分割フォトダイオード(検出器D)を用いた零位法により法線ベクトルを計測する。ここで、第1計測点A₁(x,z)の法線ベクトルを計測した際の、光学系3の位置座標をT₁(X₁,Y₁,Z₁)=(0,Y₀+yo₁,0)、光学系3のZ軸周りとX軸周り、および試料系2のZ軸周りとX軸周りの角度を(,)=(1,1)、(,)=(1,1)とする。このときの変位量・変角量(yo₁,1,1) 1,1,1)を法線ベクトル計測値とする。計測点における法線ベクトルは光学系3と試料系2の変角量より求まり、更にこの法線ベクトルから被測定物表面の傾きが求まる。また、法線ベクトル計測点の座標は、光学系の変位量・変角量、試料系の変角量、光路長L及び回転中心変位R_yから求まる。

【0020】

つまり、不変の値 L と R_y、法線ベクトルの計測値(, , , , yo)を用いて以下の数 1 により被測定物表面上の計測点 A (X_A, Z_A) と、数 2 により法線ベクトル N (n_x, n_z)の導出が可能である。

【数1】

$$\begin{split} X_{A} &= f\left(\theta, \phi, \alpha, \beta, yo, L, R_{y}\right) \\ Z_{A} &= g\left(\theta, \phi, \alpha, \beta, yo, L, R_{y}\right) \end{split}$$

【 0 0 2 2 】 【 数 2 】

$$N = \begin{pmatrix} n_x \\ n_z \end{pmatrix} = \begin{pmatrix} \tan (\alpha - \theta) \\ \tan (\beta - \phi) \end{pmatrix}$$

【0023】

本測定方法では、フーリエ級数で測定面形状を近似し、最小二乗法によって、その点で のスロープ残差を最小にするフーリエ級数展開係数を求めて測定面形状を一意的に決定す るのである。ここで、計測点での面のスロープ(傾き)は、法線ベクトルから算出するこ とができる。実測データを用いてフーリエ級数形式形状関数を特定する前に、本測定方法 では理想形状関数を用いて、形状残差とスロープ残差を共に所定の精度以下になるような フーリエ級数展開の次数 n を見出すことが特徴である。ここで、ある点の傾きは理想形状 関数の一階微分から容易に算出することが可能である。

【0024】

通常、被測定物の表面形状は、球面、円筒面、放物面、楕円体面は勿論、非球面、さらには解析関数で表現できない自由曲面でも光学系の設計において正確に関数で表され、その理想形状関数に近づけるように超精密に加工されるのである。従って、本測定方法において理想形状関数から導かれる理想データを用いて形状残差とスロープ残差を共に所定の精度以下になるように次数nを決定することは、何ら実用的価値を損なうものではない。そして、フーリエ級数展開の次数nが決まると、二次元形状の場合には少なくともn個の計測点、三次元形状の場合には少なくともn×n個の計測点で、座標と法線ベクトルを計測するのである。こうすることによって、計算誤差が保証された状態で、実測データを用いてフーリエ級数形式形状関数を求めることが可能となる。一般には、フーリエ級数展開

を用いて最小二乗法によって任意曲面を近似する場合、座標(形状)の残差を最小にする が、本測定方法では、提案した法線ベクトル形状計測法に合わせて、形状残差とともに、 スロープの残差を最小にすることが特徴である。

[0025]

以上説明した形状を導出する一連の手順を形状導出アルゴリズム P と称することにする 。2軸2組のゴニオメータから得られる4つの角度データ(, , ,)と1軸直進 ステージから得られる1つの距離データ(yo)とが、各計測点毎に得られる。つまり、計 測点A;毎に、計測値セット(;,;,;,;,yo;)が得られる。そして、これらの 実測データを用いて形状導出アルゴリズム P によって形状を導出するのである。ここで、 特定の光路長Lの値で導出した形状をP(L)と表す。尚、光路長Lは、初期状態におい て原点と測定系3の回転中心までの距離として、別途測長機を用いて測定しておき、その 実測値L₀を得るが、被測定物の要求される測定精度より遥かに大きな計測誤差を有して いる。各計測点で光路長Lが一定になるように1軸直進ステージを駆動するが、それには 検出器Dを構成する距離モニター用の4分割フォトダイオードの出力が一定になるように フィードバック制御する(特許文献1参照)。尚、形状測定装置に組み込み、光路長Lを モニターする機構は他のものでも良い。

[0026]

そして、本発明は、光源から出射された計測ビームと被測定物1の表面で反射された反射ビームが完全に重なるように、2軸2組のゴニオメータを制御するとともに、光検出器 Dと被測定物表面間の光路長Lが一定になるように1軸直進ステージを制御して、被測定 物表面の任意計測点を計測し、各計測点毎に、2軸2組のゴニオメータから得られる4つ の角度データと1軸直進ステージから得られる1つの距離データとからなる計測値セット を取得する。この計測値(, , , , , yo)は、計測基準点A₀を原点とし、原点か らの変位として取得した計測値を用いるか、あるいは前後の測定点間の差分として取得し た計測値を用いる。そして、計測点の数だけの計測値セットから形状導出アルゴリズムP により形状を導出する。この際に、光路長Lを変数として複数の形状P(L)を導出し、 形状変化の収束を利用して真の光路長L_cと収束形状P(L_c)を算出するのである。 【0027】

光路長しの変化によって形状変化の収束を見つけ出す方法には、いくつか方法がある。 第1の方法は、図3に示すように、任意に設定した光路長しに対して一定の微小変位 し を与え、形状P(L)と形状P(L+ L)又はP(L- L)とを比較し、形状変化が 所定範囲内になるときのLの値を真の光路長し_cとし、収束形状P(L_c)を決定する方法 である。実際には、光路長の実測値L₀の周囲でランダムに光路長を与えて計算する。こ の方法は、形状の収束性が悪く、多数の形状導出の計算が必要であり、計測に長時間を要 する。

【0028】

第2の方法は、光路長Lの値を任意に変化させて L変位前と変位後の形状導出を行い、 複数の形状差のデータを作成し、複数の形状差のデータの中の任意の座標において、L の値と形状差をパラメータとした関数を導出し、その関数の極小値を計算で求め、形状差 が最小になるときのLの値を真の光路長L_cとし、収束形状P(L_c)を決定するのである

[0029]

図4は、R=2000mm球面ミラーの中心を通る断面形状を導出した例であり、L= 2000mm、 L=50mmに設定して計測し、理想形状に対する導出形状の残差を示 したグラフである。当然、P(L=2000)は、理想形状に対する残差は全測定範囲で 略零であるが、P(L+ L=2050)やP(L- L=1950)は、中心から離れ るに従って理想形状から大きくずれている。そこで、複数の形状P(L)と形状P(L+ L)の対を導出し、形状の任意の座標、例えばミラー中心から20mmの位置での形 P(L)と形状P(L+ L)との形状差を取得し、これらをL軸上でプロットし、その 点を通る関数が極小値をとるLの値を求め、このLの値を真の光路長L_cとするのである 10

20

。この方法は、前述の第1の方法を改良したものであり、形状の収束性は若干改善される が、十分ではない。

【 0 0 3 0 】

第3の方法は、二分法を用いて形状収束性を高めた方法である。この方法は、光路長Lの近似値をL₀に設定するとともに、真の光路長Lcが閉区間[L₀- L,L₀+ L]に含まれるように変位 Lを設定し、この閉区間内で形状P(L)を導出し、区間の中間の形状に対する区間の両端の形状の差をそれぞれ計算し、この形状差の小さい方の半区間を新たな区間とする二分法により、形状差が所定範囲内になったときの区間中間の値を真の光路長Lcとし、収束形状P(Lc)を決定する方法である。この場合、光路長Lの近似値L₀を、誤差を含む実測値とし、変位 Lを光路長の計測誤差よりも大きな値に設定することが好ましい。勿論、近似値L₀を任意に設定し、変位 Lを十分大きな値に設定することも可能であるが、その場合には収束性が悪くなる。

【 0 0 3 2 】

そして、L₀の地点をc₁と定義し、および ± L変位させた地点を(a₁,b₁)とそれぞ れ定義する。それから、各地点でのLの値(a₁,b₁,c₁)を用いて形状導出アルゴリズ ²⁰ ムP(L)を実行する。

【0033】

n回目の施行においてa_nでの形状とc_n地点での形状差_{an}、およびb_nでの形状とc_n 地点での形状差_{bn}を比較する。

【0034】

【数3】

$$\varepsilon_{a_n} = P(a_n) - P(c_n)$$

$$\varepsilon_{b_n} = P(b_n) - P(c_n)$$

【0035】

そして、 _{an} > _{bn}のとき、 n = n + 1 に更新し、 b_{n-1}と c_{n-1}の中間に新しく c_n(c₂)の地点を設け、 c_nにおいて形状を導出し、同時に a_n = c_{n-1}、 b_n = b_{n-1}に更新する。これらの関係を数 4 に示す。

【0036】

【数4】

$$c_{n} = (b_{n-1} + c_{n-1})/2$$

 $a_{n} = c_{n-1}$
 $b_{n} = b_{n-1}$

【0037】

また、 _{an} < _{bn}のとき、 n = n + 1 に更新し、 a_{n-1}と c_{n-1}の中間に新しく c_n(c₂) の地点を設け、 c_nにおいて形状を導出し、同時に a_n = a_{n-1}、 b_n = c_{n-1}に更新する。 これらの関係を数 5 に示す。

【 0 0 3 8 】

40

30

40

【数5】

$$c_{n} = (c_{n-1} + a_{n-1})/2$$

 $a_{n} = a_{n-1}$
 $b_{n} = c_{n-1}$

【0039】

新しく設けた c_n地点での導出形状と a_n, b_nの地点において導出された形状差(_{an}10 、_{bn})を数 3 により計算して比較する。そして、_{an}、_{bn}が一定の値よりも小さくなったときに、形状が収束したと判断する。 c_nの値が最終的に超精密形状計測機の光源から試料までの真の光路長 L_cに収束し、絶対値が確定する。 【 0 0 4 0 】

例えば、図6に示すように、先ず _{a1}と _{b1}を比較する。 _{a1}および _{b1}がある一定の 値以上であり、 _{a1} < _{b1}という結果になったと仮定すると、真のLの値は a₁と c₁の間 に存在するので、新しく c₂という距離の地点で形状導出を実行する。

【0041】

次に、 _{a2}と _{b2}を比較する。 _{a2}および _{b2}がある一定の値以上であり、 _{a2} > _{b2} という結果になったと仮定すると、真のLの値はb₂とc₂の間に存在するので、新しくc 20 ₃という距離の地点で形状導出を実行する。

【0042】

それから、 _{a3}と _{b3}を比較する。 _{a3}および _{b3}がある一定の値以下になったとき、 その地点での c₃が真の L の値となる。 _{a3}および _{b3}がある一定の値以下になるまでこ のルーチンを繰り返すのである。

【0043】

二分法による測定手順、自律校正手順を用い、光路長しの決定をおこなった。R=20 00mm球面ミラーの形状測定において、測定条件として、L₀=2000mmとし、球 面ミラーの中心から±20mmの範囲を計測し、その点を中心に L=±1.00mmの 地点変位させた地点で計測及び形状導出を行い、基準となるL₀地点との形状差を求めた 。形状残差の大きさを比較することで光路長しの真の値がプラス方向にあるのかマイナス 方向にあるのかを判別し、新たな基準点を中間に設けて計測を行うことを図5のフローチ ャート通りに繰り返し、 L=±0.50mm、±0.25mmの地点まで追い込み真の Lの値を導出した結果を図7~図9に示す。横軸は球面ミラーの半径方向位置、縦軸は形 状残差を示している。20mmの位置は球面ミラーの中心で計測基準点である。

図7は、P(2000.00)とP(2001.00)及びP(1999.00)との 形状残差を計算した結果であり、図中実線はP(2000.00)とP(2001.00))との形状残差の絶対値、点線はP(2000.00)とP(1999.00)との形状 残差の絶対値を示している。この結果、真のLは、2000.00mmと2001.00 mmの間にあることが分かる。そこで、新たに中間地点2000.50mmを設定する。 【0045】

図 8 は、 P (2 0 0 0 . 5 0) と P (2 0 0 0 . 0 0) 及び P (2 0 0 1 . 0 0) との 形状残差を計算した結果であり、図中実線は P (2 0 0 0 . 5 0) と P (2 0 0 1 . 0 0) との形状残差の絶対値、点線は P (2 0 0 0 . 5 0) と P (2 0 0 0 . 0 0) との形状 残差の絶対値を示している。僅かに実線の方が、形状残差が小さいので、真の L は、 2 0 0 0 . 5 0 m m と 2 0 0 1 . 0 0 m m の間にあることが分かる。そこで、新たに中間地点 2 0 0 0 . 7 5 m m を設定する。

[0046]

図 9 は、 P (2 0 0 0 . 7 5) と P (2 0 0 0 . 5 0) 及び P (2 0 0 1 . 0 0) との ⁵⁰

形状残差を計算した結果であり、図中実線はP(2000.75)とP(2001.00)との形状残差の絶対値、点線はP(2000.75)とP(2000.50)との形状 残差の絶対値を示している。この結果、真のLは、2000.50mmと2000.75 mmの間にあることが分かる。

[0047]

このように、 L変位させた地点での形状残差が小さい方に真のLの値を追い込むことで、3回の繰り返しにより真の光路長Lの値が2000.50~2000.75mmの間にあると求められた。これらを更に繰り返すことにより、更に値を絞り込むことが可能である。但し、図8の結果より、両区間の形状残差の差が僅かであるので、真の光路長Lは2000.50mmに非常に近い値になることは予測される。

【0048】

図10は、R=2000mm球面ミラーの三次元形状を測定した結果である。計測範囲 は50mm×50mm、フーリエ級数展開の次数nは50、測定点の数は51×51個で ある。次数nは、理想形状に対するスロープ残差が1×10⁻⁷rad以下と形状残差が1n m以下となる条件で見出した。図10(a)は実測データを用いたフーリエ級数展開によ る三次元導出形状を示し、図10(b)は理想形状からのずれを示している。測定対象の 球面ミラーは、中心から25mm離れた位置で理想形状から約50nmずれていることが 分かる。このように、フーリエ級数展開最小二乗法の形状導出法で原理的に三次元形状が 正確に測定可能であることが示された。

【図面の簡単な説明】

[0049]

【図1】被測定物表面の座標と法線ベクトルを計測する方法の原理図である。

【図2】同じく2軸2組のゴニオメータの角度と法線ベクトル及び位置座標との関係を示す説明図である。

【図3】光路長Lでの形状P(L)と Lだけ微小変位させた形状P(L± L)との関 係を示す説明図である。

【 図 4 】 R = 2 0 0 0 m m 理 想 球 面 ミラー の 3 0 m m 範 囲 計 測 で の L 変 位 前 変 位 後 の 残 差 を 示 す グ ラ フ で あ る 。

【図5】二分法を用いた自律校正により形状導出する手順を示したフローチャートである

【図 6】同じく二分法を用いた自律校正により形状導出する手順を可視化した説明図である。

【 図 7 】中心値 L ₀が 2 0 0 0 . 0 0 m m で L = ± 1 . 0 0 m m の地点間の形状残差を 計算 した結果のグラフである。

【図 8 】中心値 L が 2 0 0 0 . 5 0 m m で L = ± 0 . 5 0 m m の地点間の形状残差を計 算した結果のグラフである。

【 図 9 】 中 心 値 L が 2 0 0 0 . 7 5 m m で L = ± 0 . 2 5 m m の 地 点 間 の 形 状 残 差 を 計 算 した 結 果 の グ ラ フ で あ る 。

【図10】R=2000mm球面ミラーの三次元導出形状を示し、(a)は実測データを 用いたフーリエ級数展開による導出形状を示すグラフ、(b)は理想形状からのずれを示 すグラフである。

【符号の説明】

1 被測定物

2 試料系

3 光学系

40

10

【図3】

【図5】

【図7】

【図8】

フロントページの続き

- (72)発明者 遠藤 勝義 大阪府吹田市山田丘1番1号 国立大学法人大阪大学内
- (72)発明者 東 保男
 - 茨城県つくば市大穂1番地1 大学共同利用機関法人高エネルギー加速器研究機構内
- Fターム(参考) 2F065 AA53 CC21 DD03 FF01 HH13 JJ22 MM04 PP04 QQ16 QQ18

UU05