Development of battery-type thermocell

Graduate School of Pure and Applied Sciences, University of Tsukuba¹ Center for Integrated Research in Fundamental Science and Engineering (CiRfSE), University of Tsukuba² Wataru Kobayashi^{1,2} Yuya Fukuzumi¹, and Yutaka Moritomo^{1,2}

Introduction

- Recovery of waste heat with low temperature (T<200 °C) is highly desired. • Semiconductor thermoelectric materials are expensive and need high-T waste heat for the high-performance thermoelectric conversion.
- Electrochemical thermoelectric effect has been studied, and a large value (~1) mV/K) of $\Delta V/\Delta T$ was observed. However, it needs expensive Pt electrodes. The replacement of the Pt electrode by other cheap electrode is expected.

Summary

We have fabricated a battery-type thermocell and demonstrated the electrochemical thermoelectric effect in the thermocell.

Chemical potential (ϕ) as a function of x

(1) A large value of $\Delta V / \Delta T$ (ΔV : thermoelectric voltage, ΔT : temperature difference) of -0.720 mV/K was observed for P2-type $Na_{1/2}CoO_2$.

(2) Time (t) evolution of ΔV was qualitatively explained by mean-field theory of chemical potential (Φ).

Experiments

Preparation of paste-type electrode

O3-type : $Na_{0.99}CoO_2$

 Electrolyte : propylene carbonate (PC) containing 1 mol/l NaClO₄ -Charge/Discharge current : 12 μA

Analysis of time dependence of ΔV

W. Kobayashi, A. Kinoshita, and Y. Moritomo, Appl. Phys. Lett. 107, 073906 (2015).

<u>Time (t) dependence of ΔV in Na_{0.99}CoO₂</u>

