Latest results on *B*_s-meson particle-antiparticle oscillations at

Contents

- Introduction
- •Result on Δm_s
- How we got it
- Future

Fumihiko UKEGAWA CDF Collaboration University of Tsukuba

KEK Physics Seminar April 25, 2006 IPNS, KEK

Introduction

Weak interactions (charged currents) : ${\cal L}\propto ar U W^\mu \gamma_\mu (1-\gamma_5) D'$,

$$D' \equiv \begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = V_{\mathsf{CKM}} \begin{pmatrix} d \\ s \\ b \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

 \Rightarrow Quark flavors are not always conserved, e.g. $b \rightarrow c$ and $s \rightarrow u$ transitions occur at the first order.

- At the second order, $\Delta S (\Delta B) = 2$ transitions can happen.
- Physical neutral mesons can turn into their antiparticles !
- Phenomena established for $K^0 \bar{K}^0$ and $B^0_d \bar{B}^0_d$ meson systems

 $B_s^0 - \overline{B}_s^0$ system : today

Quantum mechanics

$$\begin{split} B_q^0 &= \bar{b}q \text{ or } \bar{B}_q^0 = b\bar{q} \quad (q \equiv d \text{ or } s), \\ \text{state at } t = 0 \quad (\text{production via } \bar{p}p \to b\bar{b}X) \\ \text{For } t > 0, \ \psi(t) &= e^{-i\mathcal{H}t/\hbar} \ \psi(0) \\ \text{Two-state system } |B^0\rangle &= \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad |\bar{B}^0\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \\ \text{with a Hamiltonian } \mathcal{H} &= \begin{pmatrix} m_{11} & m_{12} \\ m_{12}^* & m_{11} \end{pmatrix} \end{split}$$

Eigenvalues

$$\lambda = m_{11} \pm |m_{12}| = m_{H,L}$$
$$\Delta m \equiv m_H - m_L = 2 |m_{12}| > 0$$

Eigentates

$$|B_L^0\rangle, \ |B_H^0\rangle = p|B^0\rangle \pm q|\bar{B}^0\rangle$$

$$\Rightarrow \ |B^0\rangle = \frac{1}{2p}(|B_L^0\rangle + |B_H^0\rangle), \quad |\bar{B}^0\rangle = \frac{1}{2q}(|B_L^0\rangle - |B_H^0\rangle)$$

Time development of a state

$$|\bar{B}^{0}(t)\rangle = \frac{e^{-im_{L}t}|B_{L}^{0}\rangle - e^{-im_{H}t}|B_{H}^{0}\rangle}{2q}$$

= $f_{+}(t)|\bar{B}^{0}\rangle + f_{-}(t)|B^{0}\rangle$

with $f_{-}(t) = i e^{-imt} \sin(\Delta m t/2)$ \Rightarrow for t > 0, the B^{0} component appears for \overline{B}^{0} at t = 0.

Is it relevant?

$$\Delta m_q = \frac{G_F^2}{12\pi^2} |V_{tb}V_{tq}|^2 m_W^2 m_B f_B^2 B_B \eta_B S\left(\frac{m_t}{m_W}\right)$$

 \Rightarrow measure Δm_q , extract $|V_{tq}|$

Crucial information on the unitarity triangle of the CKM matrix, length of one of the sides

 Δm_d known to 1%, but $|V_{td}|$ is determined only to ~ 20%.

Why? $B_B f_B^2$ has to come from theory.

But much smaller uncertainty in the ratio for B_s^0 and B_d^0 .

Tevatron accelerator complex

- New 120/150 GeV Main Injector replaced Main Ring
 Higher intensity of protons and antiprotons.
- Tevatron operates with 36 x 36 bunches (had been 6 x 6)
- Increased CM energy 1.8 TeV to 1.96 TeV

Run II started in March 2001

Run-II CDF Detector

From inside outward

- Tracking system
 - Silicon detectors : vertex
 - Main drift chamber : p
- TOF system : K/π sep.
- Solenoid : 1.5 Tesla
- EM calorimeters
- Hadron calorimeters
- Muon chambers

Good lepton ID capabilities Excellent tracking (large solenoid) Not just high- p_T physics, but also *B* physics.

Tevatron : it is an inexpensive *B*-factory

Compared to e^+e^- experiments on $\Upsilon(4S)$:

- Larger production rates, \sim 10 μb vs. 1.1 nb
- Not just B^-/\bar{B}^0 , also \bar{B}_s^0 , B_c^- , Λ_b^0 .
- Sizable Lorentz boost, $\beta \gamma \simeq 2-4 \Rightarrow \text{good } ct$ resolution.

To utilize these fatures, need to trigger them efficiently :

• Historically relied on leptons $-b \rightarrow \ell^- \bar{\nu} c$

$$- B \rightarrow J/\psi X \rightarrow \ell^+ \ell^- X.$$

- Run-II employs displaced-track trigger (SVT)
 - \Rightarrow can collect all-hadronic final states

CDF di-muon triggers

Near J/ ψ

Use semileptonic decay $\bar{B}^0_s \rightarrow \ell^- \bar{\nu} D^+_s X, \ D^+_s \rightarrow \phi \pi^+$

 $\tau(B_s^0) = 1.381 \pm 0.055 \stackrel{+0.052}{_{-0.046}}$ ps Satoru Uozumi, Ph.D. thesis, 2005

Run-II Silicon Vertex Trigger : SVT

Typical trigger requirement : two tracks above 2 GeV/c, $|d| > 120 \mu m$, $L_{xy} > 500 \mu m$.

Use silicon information at the 2nd level of trigger

- Find a track in the main tracker COT.
- Extrapolate toward the SVX.
- Find SVX hits along the road.
- Calculate impact parameter wrt the primary vertex (beam spot).
- Resolution ~50 μm
 for > 2 GeV/c.

2005

Kobayashi-Maskawa picture holds good, but we are looking for possible discrepancies!

New physics effects on the unitarity triangle ?

Now we have :

- Reconstruct *B* meson decay with flavor-specific final state, such as $\bar{B}^0 \to D^+(n\pi)^-$ and $\bar{B}^0 \to \ell^- \bar{\nu} D^{*+}$.
- \bullet Measure decay length L and momentum p
- Extract proper decay time $t = \frac{L/c}{\beta\gamma} = L\frac{m}{p}$
- Determine the initial flavor, B^0 or \bar{B}^0
- Fit for Δm

 $\bar{p}p \rightarrow b\bar{b}X$, pair-produced.

The other B hadron in the event and its daughters (e.g. lepton) gives the information.

Measure flavor tagging using B^+ and B^0 decays

$$\mathcal{A}_{\text{mix}}(t) = \frac{N(t)_{\text{unmix}} - N(t)_{\text{mixed}}}{N(t)_{\text{unmix}} + N(t)_{\text{mixed}}} = \cos(\Delta m t)$$

Incompleteness in flavor tagging : wrong tag probability \mathcal{W} $\cos(\Delta m t) \Rightarrow (1 - 2\mathcal{W}) \cos(\Delta m t)$, dilution $\mathcal{D} \equiv 1 - 2\mathcal{W}$

Same-side flavor tagging Gronau, Nippe, Rosner

Suppose you are looking for $D^0 \overline{D}^0$ mixing : $c \to D^0 (t = 0) \to \overline{D}^0 \to K^+ \pi^- (t > 0).$ Use the decay $D^{*+} \to D^0 \pi^+$, and charge of π^+ tells it was D^0 .

 $\bar{B}^* \to \bar{B}\pi$ not allowed, so $\bar{B}^{**} \to \bar{B}\pi$, or fragmentation pions.

Note :

- Charge correlations opposite for \bar{B}^0 and B^- .
- \bar{s} -quark and diquarks do bad for \bar{B}^0 , good for B^- .

b-quark fragmentation into \bar{B}_s^0 :

Flavor tag summary

	εD ² Hadronic (%)	εD ² Semileptonic (%)
Muon	0.48 ± 0.06 (stat)	0.62 ± 0.03 (stat)
Electron	0.09 ± 0.03 (stat)	0.10 ± 0.01 (stat)
JQ/Vertex	0.30 ± 0.04 (stat)	0.27 ± 0.02 (stat)
JQ/Prob.	0.46 ± 0.05 (stat)	0.34 ± 0.02 (stat)
JQ/High p _T	0.14 ± 0.03 (stat)	0.11 ± 0.01 (stat)
Total OST	1.47 ± 0.10 (stat)	1.44 ± 0.04 (stat)
SSKT	3.42 ± 0.98 (syst)	4.00 ± 1.02 (syst)

- use exclusive combination of tags on opposite side
- same side opposite side combination assumes independent tagging information

Oscillations with $\Delta m = 0.5 \text{ ps}^{-1}$ and 15 ps^{-1}

 $\Delta m_s = 15 \text{ ps}^{-1} \Leftrightarrow \text{Period } T = 0.4 \text{ ps}, \text{ need } \sigma_t < 100 \text{ fs}$

Proper time resolution : vetexing

Looking for oscillations : Amplitude analysis $1 \pm \cos(\Delta m t) \rightarrow 1 \pm \mathcal{A} \cos(\Delta m t)$, then fit for \mathcal{A}

Fourier analysis :

Interpret the time development in terms of many cosine waves with different frequencies.

 $\mathcal{A} = 1$ (and away from 0) : \Leftrightarrow oscillating

 $\mathcal{A} = 0$:

⇔ no wave of that frequency, not oscillating.

Amplitude scan : \bar{B}_s^0 sample, previous result Sensitivity ~ 13 ps⁻¹

Note : uncertainties are mostly statistical (yellow \sim green)

 B_s^0 signals : 1 fb⁻¹

Hadronic : $\bar{B}_{s}^{0} \to D_{s}^{+}(n\pi)^{-} \ (n = 1, 3)$ $\hookrightarrow \phi \pi^+, \ \bar{K}^{*0}K^+, \ \pi^+\pi^+\pi^-$

Semileptonic : $\bar{B}^0_s \to \ell^- \bar{\nu} D^+_s X$

Amplitude scan : \bar{B}_s^0 sample, 1 fb⁻¹ Now the sensitivity is ~ 25 ps⁻¹,

And an interesting structure around 17 ps^{-1} .

Is it real?

Significance

Null hypothesis :

What is the probability of obtaining a phenomenon of this significance when there is no oscillations at all?

Evaluate this prob. by :

- Toy Monte Carlo experiments
- Randomize tags in real data
 Two methods give same results ;

Probability for obtaining "depth" > 6 at any value of Δm is 0.5% (yellow histogram).

It's there at 99.5% C.L.

Conversely, if true $\Delta m_s = 18 \text{ ps}^{-1}$, what depth would you expect? (solid curve, pretty reasonable)

Let us assume it is real.

A closer look at the likelihood distribution.

cf:

$$\begin{vmatrix} V_{ld} \\ V_{ts} \end{vmatrix} = 0.199 \stackrel{+0.026}{_{-}0.025} \stackrel{+0.018}{_{-}0.015}$$
Belle, from $\frac{\Gamma(b \rightarrow d\gamma)}{\Gamma(b \rightarrow s\gamma)}$

$$\begin{vmatrix} V_{ld} \\ V_{ls} \end{vmatrix} = 0.208 \stackrel{+0.008}{_{-}0.007}$$
Plot courtesy of Tom Browder

End of the oscillation analysis part :

Questions?

If not, want to show some prospects, because this is not the end of the story, rather it is just a beginning.

Was 3.5 σ away, but now ...

CDF can provide unique tests of $b \rightarrow s$ (SUSY?)

- $B_s^0 \bar{B}_s^0$ oscillations. If $\Delta m_s \gg 18 \text{ ps}^{-1}$, a new particle in the loop.
- Look for CP violation in $B_s^0 \rightarrow J/\psi \phi$. This is phase of V_{ts} in SM, so expect ~ 0.
- CP asymmetries in $B_d^0 \to \pi^+\pi^-$ and $B_s^0 \to K^+K^-$. Latter dominated by $b \to s$ penguin.
- Look for rare decays $B_s^0 \rightarrow \mu^+ \mu^-$. Extremely suppressed in SM, $\mathcal{B} \sim 10^{-9}$ predicted.

The s-quark in the B_s^0 meson isn't just a spectator.

Rare decays $B^0_d/B^0_s o \mu^+\mu^-$

- FCNC
- V_{td} for B_d^0 , V_{ts} for B_s^0
- Helicity suppressed.
- B.F. very small.

SM predictions for B.F.

- $B_d^0 \to \mu^+ \mu^-$ (1.00 ± 0.14) × 10⁻¹⁰
- $B_s^0 \to \mu^+ \mu^-$ (3.4 ± 0.5) × 10⁻⁹
- Five orders smaller for e^+e^- modes.

Search for $B_d^0/B_s^0 \to \mu^+\mu^-$

Two and one candidates in the B_d^0 and B_s^0 mass windows.

B.R. < 3.0×10^{-8} for B_{d}^{0} B.R. < 1.0×10^{-7} for B_{s}^{0} @ 95% C.L. Preliminary.

CDF Run-I limits : B.R. < 8.6 x 10⁻⁷ for *B*⁰_d B.R. < 2.6 x 10⁻⁶ for *B*⁰_s PRD <u>57</u>, 3811 (1998)

Predict $\tau(B_s^0)/\tau(B^0) = 1.0 \pm \mathcal{O}(1\%)$ But expect $\Delta \Gamma_s/\Gamma_s \sim 0.1$. Mode dominated by CP even $(\Gamma_{\perp}/\Gamma = 0.232 \pm 0.100 \pm 0.013, \text{ CDF}).$

Can exhibit a different τ than in flavor eigenstates.

Future : look for CP-violation, ~0 expected in SM, $arg(V_{ts})$.

 $B_d^0/B_s^0 \to h^+ h'^-$ measurements First observation of $B_s^0 \to K^+ K^-$

$$\frac{f(\overline{b} \to B_s^0) \cdot \mathcal{B}(B_s^0 \to K^+ K^-)}{f(\overline{b} \to B_d^0) \cdot \mathcal{B}(B_d^0 \to K^+ \pi^-)} = 0.50 \pm 0.08 \pm 0.07$$

 $\mathcal{B}(B_d^0 \to \pi^+ \pi^-) / \mathcal{B}(B_d^0 \to K^+ \pi^-) = 0.24 \pm 0.06 \pm 0.05$ $\mathcal{A}_{\mathsf{CP}}(B^0 \to K^+ \pi^-) = -0.058 \pm 0.039 \pm 0.007 \text{ (360 pb}^{-1)}$

 $B_s^0 \rightarrow K^+ K^-$ (360 pb⁻¹) : $\tau(B_s^0) = 1.53 \pm 0.18 \pm 0.02$ ps (CP eigenstate) \Rightarrow width difference $|\Delta \Gamma_s|/\overline{\Gamma}_s = -0.08 \pm 0.23 \pm 0.02$ using world ave τ_s from flavorspecific final states.

Angle γ in a longer term (given Δm_s)

CDF Run II Preliminary 360 pb⁻¹ $S_{0}^{0} = 0$ S_{0}^{0}

Summary

A phenomenon consistent with $B_s^0 \bar{B}_s^0$ oscillations has been observed at 99.5% CL :

- Δm_s already very precise, $|V_{td}/V_{ts}|$ to a few %.
- $\Delta m_s \sim 17 \text{ ps}^{-1} \approx \text{SM}$, no new particle in the loop?

It is not the end of CDF B-physics. Rather, possibilities for new measurements modulated by $B_s^0 \overline{B}_s^0$ mixing:

- Look for CP violation in $B_s^0 \rightarrow J/\psi \phi$. This is phase of V_{ts} in SM, so expect ~ 0.
- CP asymmetries in $B_d^0 \to \pi^+\pi^-$ and $B_s^0 \to K^+K^-$. Should allow a determination of γ .

Backup slides

$$\Lambda_{b}^{0} \to J/\psi \Lambda^{0} \to \mu^{+}\mu^{-}p\pi^{-}$$

$$\int_{0}^{\Lambda_{b}^{0} \to J/\psi \Lambda^{0}} \frac{(DF II Preliminary 370 \, pb^{-1})}{(Data)} + \frac{(Data)}{(Data)} \frac{(DF II Preliminary 370 \, pb^{-1})}{(Data)} + \frac{(Data)}{(Data)} +$$

Proper Decay Length (μm)

$$\tau(\Lambda_b^0) = 1.45 {+0.14 \atop -0.13} \pm 0.02$$
 ps

 $\tau(\Lambda_b^0)/\tau(B^0) = 0.944 \pm 0.089$

Theory, Gabbiani *et al.* PRD 70, 094031 (2004) $= 0.86 \pm 0.05$

B physics : does the unitarity triangle close?

- $|V_{cb}|$ from $b \to c\ell\nu$, $|V_{ub}|$ from $b \to u\ell\nu$. **B**⁰_S
- $|V_{td}|$ from Δm_d , better if we use ratio

$$\frac{\Delta m_s}{\Delta m_d} = \left| \frac{V_{ts}}{V_{td}} \right|^2 \frac{m_{B_s}}{m_{B_d}} \xi^2 \quad (\xi = 1.210 \, \substack{+0.047 \\ -0.035})$$

- $\sin 2\beta$ from $B^0/\bar{B}^0 \to J/\psi K_S^0$. Now precisely known.
- α from $B^0/\bar{B}^0 \rightarrow \pi^+\pi^-$, etc.
- γ from $B \rightarrow DK$, etc.

SVT impact parameter resolution

Layer 00

Detector

- Single-sided
- At radius ~ 1.6 cm, minimize effect of multiple scattering.
- Can operate up to $\sim 5 \text{ fb}^{-1}$

Example Mass Spectrum

Signal Yield Summary: Hadronic

 high statistics light B meson samples: B⁺ (D⁰π): 26k events B⁰ (D⁻π): 22k events

Amplitude Scan: Hadronic Period 1

Amplitude Scan: Hadronic Period 2

Amplitude Scan: Hadronic Period 3

Semileptonic Scan: Period 1

Semileptonic Scan: Period 2

Semileptonic Scan: Period 3

Hadronic Scan: Combined

Semileptonic Scan: Combined

Probing angle γ (phase of V_{ub})

- $B^{0} \rightarrow \pi^{+} \pi^{-}$ once thought to be the mode for sin2(π - γ - β). (assuming $b \rightarrow u$ tree dominance over penguin)
- CLEO finds much larger K⁻ π^+ and tiny $\pi^+ \pi^-$.
- Not just small rates, but also means penguin pollution. \rightarrow Relation to sin(2 α) less clear.
- Strategies proposed, but are challenging experimentally...

New approach : R. Fleischer, Phys. Lett. B 459, 306 (1999). Throw in $B_s^0 \rightarrow K^+K^-$, measure asymmetries in both B^0 and B_s^0 .

In general, for a decay $B^0 \rightarrow f$ (f = CP eigenstate):

 $A_{CP}(t) = A^{dir} \cos(\Delta m t) + A^{mix} \sin(\Delta m t).$ A^{dir} : "direct" CP violation, A^{mix} : CP violation thru mixing. Experimentally, measure 4 A's from $B^0 \rightarrow \pi^+ \pi^-$ and $B^0_s \rightarrow K^+ K^-$. Then extract β , γ and penguin and tree decay amplitudes.

Angle γ (phase of V_{ub}) continued

 $\begin{array}{l} \hline Four \ CP \ asymmetries \ to \ measure.} \ (\lambda = \sin \theta_c) \\ \circ \ A^{dir}(B^0 \to \pi^+ \pi^-) = -2d \sin \theta \sin \gamma \ / \ (1 - 2d \cos \theta \cos \gamma + d^2) \\ \circ \ A^{mix}(B^0 \to \pi^+ \pi^-) = [\sin 2(\beta + \gamma) - 2d \cos \theta \sin(2\beta + \gamma) + d^2 \sin 2\beta] \\ \quad \ / \ [1 - 2d \cos \theta \cos \gamma + d^2] \\ \circ \ A^{dir}(B^0_s \to K^+K^-) \ \sim \ 2(\lambda^2/d) \sin \theta \sin \gamma \\ \circ \ A^{mix}(B^0_s \to K^+K^-) \ \sim \ 2(\lambda^2/d) \cos \theta \sin \gamma \end{array} \begin{array}{l} \ If \ no \ penguin, \\ A^{dir} = 0 \qquad (B^0, B^0_s) \\ A^{mix} = \sin 2(\beta + \gamma) \ (B^0) \end{array}$

 $A^{\text{mix}} = \sin(2\gamma) \quad (B^{O}_{s})$

Four unknowns to extract :

- β , γ = angles of the unitarity triangle.
- d = ratio of penguin (P) to tree (T) decay amplitudes, $\theta = \text{phase of } "P/T"$ $d e^{i\theta} \equiv \lambda |V_{cb}/V_{ub}| / (1-\lambda^2/2) [P/(T+P)]$

Expect ~5 k $B^0 \rightarrow \pi^+ \pi^-$, ~10 k $B^0_s \rightarrow K^+ K^ \rightarrow$ angle γ to ~10°.

