Progress in Semileptonic Decays with BABAR

Jochen Dingfelder,

SLAC, Stanford University

Outline of this Talk

• Introduction:

Semileptonic Decays - Overview & Motivation

PEP-II and BaBar - Status

- Exclusive Semileptonic B decays:
 - $B \rightarrow D^* l \nu$ Form Factors and $|V_{cb}|$
 - $B \rightarrow D^{**} l \nu$ narrow states

CHEP'OG

OSCO

DPF'06 $B \rightarrow D/D^*/D^{**}l \nu$

$$B \rightarrow \pi l \nu$$

• Exclusive Semileptonic D decays:

$D_s \rightarrow \phi l \nu$

 $D \rightarrow K l \nu$

Why Study Semileptonic Decays?

■ Semileptonic decays B → X_{c,u} ℓ v offer clear view of the b quark in the B meson
 ■ Leptonic and hadronic currents factorize!

Two experimental approaches:

Inclusive Decays

- Large signal rate, high bkg
- Total rate calculated with HQE
- ➢ Need Shape Function (b-quark motion in B meson) → smears kin. spectra.

Exclusive Decays

- Lower signal rate, better bkg reduction
- Need Form Factors to describe hadronization process
- > Measurement as function of q^2 , angles

Constraining the Unitarity Triangle

Towards 1/ab ... PEP-II Performance & Plans

Our Research Tools

$$B \rightarrow X_{c,u} \ell \nu$$

$$\rightarrow \pi^{\pm}s, K^{\pm}s, \gamma s$$

$$\ell = e, \mu$$

- Good e, μ ID ($p_1^* > 1GeV$)
- Good hadron ID (e.g. π/K separation)
- Angular coverage ≈ 91% of 4π in CMS (challenge for v reconstruction)

- 5-layer SVT tracker —
- 40-layer Drift Chamber → dE/dx
- DIRC (RICH) for particle ID
- Csl(Tl) crystal calorimeter (e[±], γ)
- Instrumented Flux Return for muon ID

BABAR's New Muon System

Tagging Methods

$Y(4S) \rightarrow B \overline{B}$

Hadronic Tag: Fully reconstruct hadronic decay of one B: $B → D^{(*)} + (\pi^+, \pi^0, K^+, K^0) \approx 1000$ modes → know kinematics, charge, flavor of B

Semileptonic Tag:

Reconstruct $B \rightarrow D^{(*)} l \nu$ and study recoil Two $\nu \rightarrow$ tag-B kinematics incomplete

No Tag:
High statistics
High backgrounds and cross-feed
→ Fully reconstruct signal side (v reco.)

Exclusive Measurements

- Exclusive rates determined by $|V_{xb}|$ and form factors (describe hadronization)
- FF's calculated by LQCD, Light-cone sum rules, etc.

Why study exclusive decays?

- → Learn about QCD effects in semileptonic decays and compare with theoretical predictions
- → Theory uncertainies complementary to inclusive approach
- →Good to have an independent cross-check!

Motivation for Exclusive B \rightarrow X_c ℓ v

- (1) LQCD calculations are making progress ... will push error on $|V_{cb}|$ closer to inclusive result in the (near) future: $B \rightarrow D : 1-2\%$, $B \rightarrow D^* : 2-3\%$?
- (2) Better understanding of B->D^{(*(*))} 1ν background for $|V_{ub}|$
- (3) Sum of exclusive states does not saturate total branching fraction:

Decay Mode	Branching Fraction
$B^+ ightarrow l^+ u_l +$ anything	10.9 ± 0.4 %
$B^+ \to \bar{D}^* (2007)^0 \ell^+ \nu_\ell$	(6.5 ± 0.5) %
$B^+ \to \bar{D}^0 \ell^+ \nu_\ell$	(2.15 ± 0.22) %
$B^+ \to \bar{D}_1 (2420)^0 \ell^+ \nu_\ell$	(0.56 ± 0.16) %
$B^+ \to \bar{D}_2(2460)^0 \ell^+ \nu_\ell$	< 0.8% @90CL
$B^+ \rightarrow D^- \pi^+ \ell^+ \nu_\ell$	(0.53 ± 0.10) %
$B^+ \to D^{*+} \pi^+ \ell^+ \nu_\ell$	(0.64 ± 0.15) %
$B^+ \to \bar{D}^{(*)} n \pi \ell^+ \nu_\ell$??

PDG 2006: 5 (10)% mismatch for B+ (B⁰)

C

 \rightarrow Subtracting D and D*, there are 2.5-3% missing!

 \rightarrow Large non-resonant contribution ?

$V_{cb}|$ and Form Factors from $~B \rightarrow D^* \, \ell \, \nu$

 f (w=1) = 1 in heavy-quark limit Lattice QCD says: f (1) = 0.919
 Hashimoto et al, -0.035
 Hashimoto et al, PRD 66 (2002) 014503

Shape of f (w) expressed in terms of three parameters:
 ρ² (slope at w=1) , R1 , R2 (form-factor ratios)

 $\begin{aligned} \frac{d\Gamma(B \rightarrow D^* \ell \nu)}{dq^2 d\cos \theta_\ell d\cos \theta_V d\chi} &= \frac{3G_F^2 |V_{cb}|^2 P_{D^*} q^2}{8(4\pi)^4 M_B^2} \times \\ \left\{ H_+^2 (1 - \cos \theta_\ell)^2 \sin^2 \theta_V + H_-^2 (1 + \cos \theta_\ell)^2 \sin^2 \theta_V + 4H_0^2 \sin^2 \theta_\ell \cos^2 \theta_V - 2H_+ H_- \sin^2 \theta_\ell \sin^2 \theta_V \cos 2\chi - 4H_+ H_0 \sin \theta_\ell (1 - \cos \theta_\ell) \sin \theta_V \cos \theta_V \cos \chi + 4H_- H_0 \sin \theta_\ell (1 + \cos \theta_\ell) \sin \theta_V \cos \theta_V \cos \chi \end{aligned} \right\}$

• $H_{+,-,0}$ contain three FF's $A_1(w)$, $A_2(w)$, V(w)

$$A_2(w) = \frac{R_1(w)}{R^{*2}} \frac{2}{w+1} A_1(w) \quad V(w) = \frac{R_2(w)}{R^{*2}} \frac{2}{w+1} A_1(w)$$

Measure angles θ_{ℓ} , θ_{V} , χ \rightarrow determine ρ^{2} , R1, R2

$B^0 \rightarrow D^{*+} \ell \nu$ Selection

- Select $B^0 \rightarrow D^{*+} \ell \nu \quad (D^{*+} \rightarrow D^0 \pi^+)$ events with $p^*_{\ell} > 1.2 \text{ GeV}$
- Estimate backgrounds (comb., D**) from $\Delta M = M(D^*)-M(D)$ and $\cos\theta_{BY}$

Two BABAR analyses:

(1) Three D modes: D⁰->K π , K $\pi\pi^0$, K $\pi\pi\pi$

 χ^2 fit to 1D projections in ...

(2) **One** D **mode**: $D^{0} - K\pi$,

4D max. LH fit

$B \rightarrow D^*$ Form Factors : 1D Projections

- Simultaneous χ^2 fit of 1D projections in three variables w, $\cos\theta_1$, $\cos\theta_V$ (integrated over angle χ)
- \cdot First simultaneous measurement of form factors and $|\rm V_{cb}|,$ fully accounting for all correlations

$B \rightarrow D^*$ Form Factors : Full 4D Fit

• Fit in $6 \times 6 \times 6 \times 6$ bins: $\chi^2/ndf = 1337/1291$ (Prob. = 19%)

• Reproduces details of correlations (also angle χ contains valuable information)

BABAR Results vs. World Average

• Form factors 5 × more precise than former CLEO results

• Improved $|V_{cb}|$ syst error (since R1, R2 are significant contributions)

Higher Resonances – D** and Friends

- Use D** as nickname for states D*($n\pi$) with n>0, including:
 - narrow resonances D_1 , D_2^*
 - broad resonances D_0^*, D_1^*
 - non-resonant ?
- \cdot So far, little is know about the D**
- Uncertainty of D_1 , D_2^* branching fractions still ~ 20-30%

To see what he could see?

D Narrow States : Selection**

- Untagged analysis
- Use only "easy" decay modes:

 $\begin{array}{ll} D_2^{*0} \to D^{(*)_+} \pi^+ & D_2^{*+} \to D^{(*)0} \pi^+ \\ D_1^{\ 0} \to D^{*+} \pi^- & D_1^{+} \to D^{*0} \pi^+ \end{array}$

- $p_1^* > 0.8 \text{ GeV}$
- Large cominatoric background
 - → $|\cos\theta_{\rm BY}| < 1.2$

 $\begin{aligned} &\epsilon(D^{\star\pm}\pi^{\mp}) = (6.54 \pm 0.28)\% \\ &\epsilon(D^{\star0}\pi^{\pm}) = (5.26 \pm 0.41)\% \\ &\epsilon(D^{\pm}\pi^{\mp}) = (7.59 \pm 0.67)\% \\ &\epsilon(D^{0}\pi^{\pm}) = (14.77 \pm 1.46)\% \end{aligned}$

New!

D** Narrow States : Signal Extraction

• Simultaneous fit of D_1 and D_2^* in $\Delta M = M(D^{**})-M(D^{(*)})$

D** Narrow States : Results

Fit 12 parameters : 5 branching fractions 4 widths, 2 masses, and A

$$\begin{aligned} \mathcal{B}(B^{-} \to D_{1}^{o}l^{-}v) &= (4.48 \pm 0.26(stat.) \pm 0.35(syst.)) \cdot 10^{-3} \\ \mathcal{B}(B^{-} \to D_{2}^{*o}l^{-}v) &= (3.54 \pm 0.32(stat.) \pm 0.54(syst.)) \cdot 10^{-3} \\ \mathcal{B}(B^{o} \to D_{1}^{-}l^{+}v) &= (3.64 \pm 0.32(stat.) \pm 0.49(syst.)) \cdot 10^{-3} \\ \mathcal{B}(B^{o} \to D_{2}^{*-}l^{+}v) &= (2.70 \pm 0.35(stat.) \pm 0.43(syst.)) \cdot 10^{-3} \\ \mathcal{B}(D_{2}^{*} \to D\pi) &= 0.69 \pm 0.03 \\ A &= 2.75 \pm 0.44 \\ \begin{aligned} \frac{\chi^{2}}{ndf} &= \frac{698.4}{600} \end{aligned}$$

• Error on BF improved to 10-15%

$B \rightarrow D/D^*/D^{**}lv$ with Hadronic Tag

e⁻

- Start with selection of "signal-side" D **?** combination (D/D*/D** all decay through a D)
- Then fully reconstruct tag B from remaining particles in the event (increases efficiency)

• Extract D, D*, D** components using kinematics and topology

• Weak sensitivity to D** decay mode or composition:

$$D^{**} = D_{narrow} + D_{broad} + D_{non-res}$$

· Can only determine relative fractions, not absolute branching fractions

Fitting the Various Contributions

• Global χ^2 fit to "inclusive" distributions:

 $P_{lepton} = 0 (Mass^{2}(v)) \text{ for } B \rightarrow Dlv$ $M^{2}_{miss} = (p(T) - p(B_{tag}) - p(D) - p_{1})^{2}$ $N \text{ (residual charged tracks) , remove } B_{tag'} D \text{ and } I$

 Shapes of exclusive distributions (PDF's) obtained from enhanced data samples
 (→ reduces dependence on simulation)

> $B \rightarrow DXl v = B \rightarrow Dlv$ $+ B \rightarrow D^*lv$ $+ B \rightarrow D^{(*)}\pi lv$

• Fit rates, feed-down, PDF shape parameters

$B \rightarrow D/D^*/D^{**}l\nu$: Results

• Measured ratios of decay rates:

$$\begin{split} &\Gamma(B^- \to D^{\circ} l\nu)/\Gamma(B^- \to DX \, l\nu) &= 0.210 \pm 0.017(stat.) \pm 0.021(syst.) \\ &\Gamma(B^- \to D^{*\circ} l\nu)/\Gamma(B^- \to DX \, l\nu) &= 0.611 \pm 0.021(stat.) \pm 0.027(syst.) \\ &\Gamma(B^- \to D^{**\circ} l\nu)/\Gamma(B^- \to DX \, l\nu) = 0.173 \pm 0.017(stat.) \pm 0.021(syst.) \end{split}$$

• If we assume that the 3 contributions saturate total $B \rightarrow X_c lv$ branching fraction, compute absolute branching fractions:

 $BR(B^{-} \rightarrow D^{0}/v) = 2.23 \pm 0.19(stat.) \pm 0.23(syst.) \%$ $BR(B^{-} \rightarrow D^{*0}/v) = 6.81 \pm 0.23(stat.) \pm 0.30(syst.) \%$ $BR(B^{-} \rightarrow D^{**0}/v) = 1.93 \pm 0.19(stat.) \pm 0.23(syst.) \%$

Only ~ 1.7% in the higher mass stuff, while we expect ~ 3% ... if multiple π contribution is small ... !

Comparison Belle and BABAR

→ BABAR and Belle results are nicely consistent

A Remaining Puzzle

• Compare measurements of $B^0 \rightarrow D^{*+} l \nu$ and $B^+ \rightarrow D^{*0} l \nu$:

· Charged-over-neutral BF ratio does not match lifetime ratio (& isospin):

$$R = \frac{Br(B^{+})}{Br(B^{0})} = 1.32 \pm 0.07 \neq \frac{\tau(B^{+})}{\tau(B^{0})} = 1.07 \pm 0.02$$

B factories average from D. Lopez Pegna, DPF.06

Exclusive $B \rightarrow X_u l \nu$

- Branching fractions are $O(10^{-4}) \rightarrow in general statistics limited$
- $B \rightarrow \pi l \nu$ most promising, both experimentally and theoretically
- For $B \rightarrow \pi l v$, one form factor needed to extract $|V_{ub}|$

$$\frac{d\Gamma(B \to \pi l \nu)}{dq^2} = \frac{G_F^2}{24\pi^3} |V_{ub}|^2 p_\pi^3 |f_+(q^2)|^2$$

• $f_+(q^2)$ has been calculated using:

□ Lattice QCD $(q^2 > 16 \text{ GeV}^2) \rightarrow 11\%$ uncertainty □ Light Cone Sum Rules $(q^2 < 14 \text{ GeV}^2) \rightarrow 11\%$ uncertainty □ quark models (ISGW2), ...

Form-Factor Calculations for $B \rightarrow \pi l v$

- Unquenched LQCD calculations appeared in 2004
- New light-cone sum rule calculation appeared in 2004

$B \rightarrow \pi l \nu$ with Hadronic Tags

Hadronic tags have high purity, but low efficiency

- Event kinematics is known by a 2-C fit
- Use m_B and m_{miss} distributions to extract the signal yield

$B \rightarrow \pi l v$ with Semileptonic Tags

- **Tag one** B in $D^{(*)}\ell\nu$ and look for $B \to \pi\ell\nu$ in the recoil
- Pro: $B \rightarrow D^* \ell \nu$ BF large Con: Two neutrinos in the event Event kinematics determined assuming known $m_{\rm B}$ and m_{ν}

Events/0.5

40

30

20

10

BABAR

10

Untagged $B \rightarrow \pi l v$: "Loose" v Cuts

• Missing 4-momentum = $p_{\nu} \rightarrow \text{Reconstruct } B \rightarrow \pi \ell \nu$

- Calculate m_B and ΔE , and perform 2-D fit for signal yields
- BABAR's new result (206 fb⁻¹, preliminary) uses 12 q² bins

"Loose" v Cuts – New Features

1. $q^2 = (p_B - p_\pi)^2$ with the "Y-average frame" method

average over arbitrary azimuth Φ, Φ+90°, Φ+180°, Φ+270°

2. Fit backgrounds in bins of q^2

 \rightarrow reduces syt. uncertainties due to background modeling

$B \rightarrow \pi l v$ Results : Form Factor and $|V_{ub}|$

untagged

compare shape with theo. predictions

	$q^2 (\text{GeV}^2/c^4)$	$ V_{ub} \ (10^{-3})$	$ V_{ub} \ (10^{-3})$
Ball-Zwicky [6]	< 16	$3.2 \pm 0.2 \pm 0.1^{+0.5}_{-0.4}$	$3.6 \pm 0.1 \pm 0.1 \pm 0.1 \substack{+0.6 \\ -0.4}$
HPQCD [3]	> 16	$4.5 \pm 0.5 \pm 0.3^{+0.7}_{-0.5}$	$4.1~\pm~0.2~\pm~0.2~^{+0.6}_{-0.4}$
FNAL [4]	> 16	$4.0 \pm 0.5 \pm 0.3^{+0.7}_{-0.5}$	$3.6 \pm 0.2 \pm 0.2 \pm 0.2 \substack{+0.6 \\ -0.4}$
APE $[5]$	> 16	$4.1 \pm 0.5 \pm 0.3^{+1.6}_{-0.7}$	$3.7 \pm 0.2 \pm 0.2 \pm 0.2 {+1.4 \atop -0.7}$

tagged

	sta	t+syst errors	
QCD calculation	χ^2	$Prob(\chi^2)$ (%)	
ISGW2 [7]	34.1	0.07	incomp.
Ball-Zwicky [6]	13.0	37.2	··· 11
FNAL [4]	12.5	41.0	nts well
HPQCD [3]	10.2	60.2 J	

$B \rightarrow \pi l v$: Systematic Uncertainties

Error Source	q ² < 8	8 - 16	q ² >16	All q ²
Signal reconstruction	2.3%	1.7%	1.7%	1.5%
Neutrino reconstruction	6.5%	5.4%	2.2%	4.8%
KL Contribution	5.9%	3.3%	4.8%	4.0%
$b \rightarrow c I_{\nu}$ background	2.5%	3.0%	1.5%	1.5%
$b \to u I_{\rm V}$	2.7%	1.8%	3.7%	1.7%
Non-BB Background	4.8%	1.5%	4.4%	1.6%
Others	3.4%	2.2%	2.1%	2.0%
Total Systematic Error	11.4%	7.9%	8.4%	7.3%

Largest syst. uncertainties:

- v reconstruction (track, photon efficiencies), K_Lreco./production
- $X_u l v$ background (high q^2)
- continuum background (high and low q²)

Exclusive $|V_{ub}|$: Summary

HFAG branching fraction average:

$$BR(B^{0} \to \pi^{-} \lambda^{+} \nu) = (1.37 \pm 0.06 \pm 0.06) \times 10^{-2}$$

Other Modes: $B \rightarrow \eta l \nu$ and $B \rightarrow \eta' l \nu$

Independent measurements of various $B \rightarrow X_u \, l \, v$ decay modes important to further constraint theoretical models $315 \, \text{fb}^{-1}$

- Hadronic tag
- Reconstruction of signal B:
 - → Lepton momentum
 p*> 0.5 GeV for electrons
 p*> 0.8 GeV for muons
 - \rightarrow Meson reconstructed in

$$\eta \rightarrow \gamma \gamma$$

$$\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$$

$$\eta \rightarrow \pi^{0} \pi^{0} \pi^{0}$$

$$\eta' \rightarrow \rho \gamma$$

$$\eta' \rightarrow \eta \pi^{+} \pi^{-}$$

fit to m_B distributions to
 extract signal yields

 $\mathcal{BR}(B^+ \to \eta \ l^+\nu) < 1.4 \ x \ 10^{-4} \ (90\% \ CL)$ $\mathcal{BR}(B^+ \to \eta \ l^+\nu) = (\ 0.84 \pm 0.27_{stat} \pm 0.21_{syst})^* 10^{-4}$

 $\mathcal{BR}(B^+ \to \eta' \ l^+ \nu) < 1.3 \ x \ 10^{-4} \ (90\% \ CL)$

Need more data!

Prospects for 1/ab (end of 2008)

Syst. Errors will be reduced:

- → Improved track and neutral reconstruction
- \rightarrow Better measurements of $B \rightarrow X_u lv$ background

Event Selection	Yield [Evt/10 ⁹ BB]	S/B	σ_{stat}	σ_{syst}	σ_{exp}
hadronic tags	130	8	11 %	6%	13%
$D^{(*)} \ell \nu$ tags	600	2.5	7 %	6%	9%
No tags	15,000	0.5	2.5 %	4%	5%

Theoretical input to translate Bf to |V_{ub}|:

→ Need improved FF calculations with reliable error estimate (if possible over full q² range)

Untagged measurements will still dominate in the near future!

$|V_{ub}|$ - Inclusive vs. Exclusive

Tension between global CKM fit and inclusive $|V_{ub}| : \sim 2.5-3 \sigma$

Are inclusive or exclusive theory correct? Good that we have a cross-check inclusive vs. exclusive

Charm Semileptonic Decays

Motivation: Study QCD effects (form factors) in semileptonic decays and test LQCD with high precision!

- D-meson sample from $e^+ e^- \rightarrow c\underline{c} \rightarrow fragmentation (D/D_s/\Lambda, ...)$
- Large cross-section: $\sigma_{cc} \sim 1.3 \text{ nb} \rightarrow \text{typically several k events}$

How to Determine the Decay Kinematics

• Define two hemispheres:

take soft π⁺, K⁻ and ℓ⁺ in the same hemisphere

Cuts $\begin{cases} \bullet p_{\ell}^{*}, p_{\ell} > 0.5 \text{ GeV} \\ \bullet p_{\pi+}^{*} < 0.4 \text{ GeV} \\ \bullet \cos\theta_{\text{thrust}} < 0.6 \end{cases}$

Y(4S) rest frame : jet-like events

 $D^{*+} \rightarrow D^0 \pi^+$, $D^0 \rightarrow K^- \lambda^+ \nu$

- Compute D direction (- $p_{all particles \neq K,\ell}$)
- Compute the missing energy in the *l* hemisphere
- Fit $\mathbf{p}_{\mathrm{D}} = \mathbf{p}_{\mathrm{K}} + \mathbf{p}_{\ell} + \mathbf{p}_{\nu}$
 - ▶ From $p_{K'}p_{\ell'}$ computed E_{miss} and D⁰ direction
 - Constraints using m_D and m_{D*} (1c or 2c fit)
 - Compute q²=(p_D p_K)²

Background Suppression

2S

Use linear combinations of variables to suppress bkg (\rightarrow 2 Fisher discriminants)

(1) B<u>B</u> background : 2 event-shape variables

 (2) Background from other c<u>c</u>: 8 kinematic and spectator-system variables (e.g. from D⁰ → Kπev)

39

$D^0 \rightarrow K^- e^+ \nu$: Data-MC Agreement

D*-D Mass difference

Check data-MC agreement for bkg

with wrong-charge control sample

1000 20000 PRELIMINARY **BABAR** PRELIMINARY **BABAR** • Data Data Backgr. MC 750 uds backg 15000 Events / 2 MeV/c² Events / 2 MeV/c² BB backg cc backg. 500 10000 Signal yield : ┥[╋]╋╪_{╋╋}╪[╋]╪[╋]╪[╋]╪[╋]╪[╋]╪[╋]╪[╋]╋ 84000 250 5000 0 0 0.15 0.2 0.25 0.3 0.15 0.2 0.25 0.3 $\delta(m)$ (GeV/c²) $\delta(m)$ (GeV/c²)

q² Spectrum

Use control samples to check reconstruction: $D^{*+} \rightarrow D^0 \pi^+, D^0 \rightarrow K^- \pi^+ \pi^0 (\pi^0 \rightarrow \gamma \gamma)$ Apply same selection criteria,

Treat π as e and π^0 as ν \rightarrow q² resolution from data

$D^0 \rightarrow K^- e^+ \nu$: Form-Factor Results

• Fit 2 parameterizations to data :

$$\left| f_{+}(q^{2}) \right| = \frac{f_{+}(0)}{1 - \frac{q^{2}}{m_{pole}^{2}}}$$
$$\left| f_{+}(q^{2}) \right| = \frac{f_{+}(0)}{\left(1 - \frac{q^{2}}{m_{D_{s}}^{2}}\right) \left(1 - \frac{\alpha_{pole}q^{2}}{m_{D_{s}}^{2}}\right)}$$

- Pole mass below m(D_S*)= 2.112 GeV
- α agrees well with LQCD hep-ph/0408306 $\alpha = 0.50 + -0.04$
- Discrepancy with CLEO-c value !

experiment	stat	m _{pole} (GeV/c ²)	α _{pole}
CLEO-c	281 pb ⁻¹	$1.98 \pm 0.03 \pm 0.02$	$0.19 \pm 0.05 \pm 0.03$
FOCUS	13k evts	$1.93 \pm 0.05 \pm 0.03$	$0.28 \pm 0.08 \pm 0.07$
Belle	282 fb ⁻¹	$1.82 \pm 0.04 \pm 0.03$	$0.52 \pm 0.08 \pm 0.06$
BaBar	75 fb ⁻¹	$1.854 \pm 0.016 \pm 0.020$	$0.43 \pm 0.03 \pm 0.04$

$D_s \rightarrow \phi e \nu$

4 kinematic variables : q^2 , θ_v , θ_l , χ

 \cdot Use pole dominance parameterization for the three form factors $A_1,\,A_2,\,V$:

$$A_i(q^2) = \frac{A_i(0)}{1 - q^2 / M_A^2}$$

$$V(q^2) = \frac{V(0)}{1 - q^2 / M_V^2}$$

• Measure form-factor ratios at $q^2 = 0$:

$$r_V = V(0)/A_1(0)$$
 $r_2 = A_2(0)/A_1(0)$

- $D_s \rightarrow \phi \, l \, \nu$, $\phi \rightarrow K^+ K^-$
- Same Method as for $D \rightarrow Klv$, but without D^*
- Fit $p_{Ds} = p_{K+} + p_{K-} + p_l + p_v$ (m_{Ds} mass constraint)
- $\boldsymbol{\cdot}$ Compute kinematic variables : q^2 , $\boldsymbol{\theta}_V^{},\,\boldsymbol{\theta}_l^{},\,\boldsymbol{\chi}$

$D_s \rightarrow \phi e \nu$: Fit Results

$D_s \rightarrow \phi \ l \ v$: Form-Factor Results

• Form factor ratios at q²=0 (fixing m_A = 2.5 GeV and m_V = 2.1GeV) :

 \rightarrow Same accuracy as D \rightarrow K*ev (FPCP 2006, J.Wiss)

• Fixing only the vector pole mass :

 $r_2 = 0.711 \pm 0.111 \pm 0.096$ $r_v = 1.633 \pm 0.081 \pm 0.068$ $m_A = 2.53^{+0.54}_{-0.35} \pm 0.054 \text{ GeV}$

Charm Semileptonic Decays - Summary

- $D \rightarrow Kev$ form factor : First study of the BABAR potential in charm sl decays Very successful, same precision as lattice reached
- Opens a large perspective for form-factors measurements in BABAR ...
 - \succ D_s \rightarrow ϕev form factors
- Still a lot of interesting measurements we can do :
 - Form factors in $D \rightarrow \pi lv$ and $D \rightarrow K \pi lv$
 - ► More detailed study of FF in $D_s \rightarrow Xev$
 - Comparison between different channels
 - Charm baryons,
- <u>In the future</u>: Derive $|V_{ub}|$ using ratio of $D \rightarrow \pi l \nu$ and $B \rightarrow \pi l \nu$

$$\frac{d\Gamma(B \to \pi \lambda \nu)/dw}{d\Gamma(D \to \pi \lambda \nu)/dw} = \left| \frac{V_{ub}}{V_{cd}} \right|^2 \left(\frac{M_B}{M_D} \right) \left| \frac{f_+^{B \to \pi}}{f_+^{D \to \pi}} \right|^2$$

 $q_{D}^{2} \in [0; 2.975] \text{ GeV}^{2}$

Conclusions

- BABAR has a number of new and precise measurements in the B → D/D*/D** sector.
 A number of problems remain: D*ln puzzle, sum of exclusive, ...
- A lot of progress in exclusive $|V_{ub}|$ (esp. $\pi l \nu$) in the last two years. Need improved FF calculations from theory ! Important cross-check of this most precise inclusive $|V_{ub}|$.
- Charm SL decays provide high-quality lattice calibration. Techniques can be applied to B decays !

Backup Slides

Inclusive vs. Exclusive

Inclusive Determination of $|V_{cb}|$

- Energy(lep), $Mass(X_c)$ spectra
- $\Gamma_{clv} \sim |V_{cb}|^2 f_{OPE}(m_b, m_c, a_i)$
- OPE calculation of moments :

 $< M_X^n > = f_{OPE}$, (m_b, m_c, a_i)

Measure E₁, m_x moments
Perform global OPE fit to data:

 $|V_{cb}|$ with 2% error

Inclusive Determination of |V_{ub}|

• Inclusive rate from HQE in α_{s} (perturbativ) und $1/m_{b}$ (non -perturbativ) $\Gamma(B \rightarrow X_{u}|v) = \frac{G_{F}^{2}m_{b}^{5}}{192\pi^{3}}|V_{ub}|^{2} \times \left\{1 + O(\alpha_{s}) + O\left(\frac{1}{m_{b}^{3}}\right)\right\}$

• <u>Problem (exp.)</u>: Separation of $B \rightarrow X_u l v$ signal from $B \rightarrow X_c l v$ background

 \leftarrow Smeared due to e.g. exp. resolution \rightarrow

■ <u>Problem (theo.)</u>: Poor convergence of HQE in regions where $B \rightarrow X_c lv$ kinematically forbidden

- → Need non-perturbative Shape Function (SF) to determine partial rates
- → Use SF together with calculation of triple-differential decay rate Bosch, Lange, Neubert, Paz (BLNP) to get |V_{ub}|

Shape Function – What Is It?

- The Shape Function (SF) describes Fermi motion of b quark inside B meson
 → smears kinematic spectra
 - cannot be calculated & shape is unknown
 - Universal property of B meson (leading order 1/mb)
 - Determine moments of SF e.g. with $b \rightarrow sg$ decays

Status of Inclusive $|V_{ub}|$

Statistical	± 2.2%
Exp. systematic	± 3.8%
SF param. (m_b, μ_{π}^2)	± 4.2%
Theory	± 4.2%

- Exp. and SF param. error will decrease with more data
- <u>Theo. Errors</u>: (1) Weak annihilation: 1.9%

(2) Subleading SF: 3.8%

higher order non-pert. corrections cannot be constrained with $b \rightarrow s\gamma$

V_{ub} "without" Shape Function

- (1) Extract $|V_{ub}|$ from full M_X spectrum
- (2) Relate $b \rightarrow ulv$ to $b \rightarrow s\gamma$ through weight function

$$\Gamma(B \to X_u | \nu) = \frac{|V_{ub}|^2}{|V_{ts}|^2} \int W(E_{\gamma}) \frac{d\Gamma(B \to X_s \gamma)}{dE_{\gamma}} dE_{\gamma}$$

LLR (Leibovich, Low, Rothstein) hep-ph/0005124

LLR (M_X < 1.67 GeV): $|V_{ub}| = (4.43 \pm 0.45_{exp} \pm 0.29_{theo}) 10^{-3}$ OPE (M_X < 2.50 GeV): $|V_{ub}| = (3.84 \pm 0.76_{exp} \pm 0.10_{theo}) 10^{-3}$