Searching for New Physics in B Decays

Gabriella Sciolla (MIT)

What is "New Physics"

- Standard Model: 1971-present
 - 35 years of success with no major failure
 - Minor failure: neutrinos have mass
- Reasons to believe SM is incomplete
 - Hierarchy problem / Fine tuning...
- Many extensions have been proposed
 - SUSY, Extra dimensions,... \rightarrow New Physics
- The roads to New Physics
 - Direct searches (Tevatron \rightarrow LHC)
 - Indirect searches
 - Study of CP violation and rare B decays
 - Electric Dipole Moment
 - ∎ g-2,...

Gabriella Sciolla – MIT

Outline

Constraints on New Physics from CP violation

- CP violation in the Standard Model
 - Why should we expect New Physics?
- The beauty of the Unitarity Triangle
 - Measurements of angles
 - Measurements of sides
 - ** New measurement of R_t in $B \rightarrow \rho \gamma$ from BaBar**

(submitted to PRL last week)

- Constraints to New Physics from rare B decays
 - Example: $B \rightarrow \tau v$ and $B \rightarrow s \gamma$
- Summary and conclusion

CP violation

• What is CP? $CP = C \times P$

C: Charge Conjugation Particle \rightarrow Anti-particle P: Parity Inverts space coordinates

Why is CP violation interesting?

- Crucial ingredient to explain the matter-dominated universe
 - A. Sakharov (1967)
- Measures two fundamental parameters of Standard Model
 - ρ and η
- May hold the key to uncover the first signs of New Physics
 - e.g.: MSSM has 43 new CP violating phases!

CP violation in the Standard Model

- Discovered by Fitch and Cronin in 1964 in K_L decays
- Introduced in Standard Model in 1973 by Kobayashi and Maskawa
- In KM mechanism, CP violation originates from a <u>complex phase</u> in the quark mixing matrix (CKM matrix)

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\bar{\rho} - \bar{i}\bar{\eta}) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1 - \bar{\rho} - \bar{i}\bar{\eta}) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^6)$$

$$V_{cb} = \begin{pmatrix} V_{cb} & V_{cb} \\ V_{cb} & V_{cb} \end{pmatrix} = \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\bar{\rho} - \bar{i}\bar{\eta}) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1 - \bar{\rho} - \bar{i}\bar{\eta}) & -A\lambda^2 & 1 \end{pmatrix}$$

A, λ (Cabibbo angle): very well measured ρ,η : poorly known until recently

Gabriella Sciolla – MIT

h

Going beyond CKM

The (many) strengths of CKM

- Simple explanation of CPV in SM
- It is very predictive: only one CPV phase
- It accommodates all experimental results
 - Indirect CP violation in $K \rightarrow \pi \pi$ and $K_{L} \rightarrow \pi l v$
 - Direct CP violation in $K \rightarrow \pi \pi$
 - CP violation in the B system

New Physics models have several sources of CP violation

Exploit CKM prediction power -->use CPV as probe for New Physics

Measure CP violation in channels <u>theoretically well understood</u> and look for deviations w.r.t. SM expectations

The Unitarity Triangle

Unitarity of CKM implies: $V^+V = 1 \rightarrow 6$ unitarity conditions Of particular interest: $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

All sides are $\sim O(1) \rightarrow$ possible to measure both sides and angles!

- CP asymmetries in B meson decays measure α,β and γ
- Sides from semileptonic B decays, B mixing, rare B decays

Gabriella Sciolla – MIT

The Unitarity Triangle

Unitarity of CKM implies: $V^{\dagger}V = 1 \rightarrow 6$ unitarity conditions Of particular interest: $V_{ud}V_{ub}^{*} + V_{cd}V_{cb}^{*} + V_{td}V_{tb}^{*} = 0$

All sides are $\sim O(1) \rightarrow$ possible to measure both sides and angles!

- CP asymmetries in B meson decays measure α, β and γ
- Sides from semileptonic B decays, B mixing, rare B decays

Gabriella Sciolla – MIT

Standard Model parameters (ρ,η)

To precisely determine the parameters of the Standard Model (ρ , η), all we need is a precise measurement of 2 quantities, e.g.: 2 sides.

But additional measurement are essential to look for New Physics

Redundancy, redundancy, redundancy!

3 ways to look for New Physics:

- a) Sides vs angles
- b) Measurement of same angle using channels with different sensitivity to NP
- c) Measurement of same sides using channels with different sensitivity to NP

Redundancy, redundancy, redundancy!

3 ways to look for New Physics:

- a) Sides vs angles
- b) Measurement of same angle using channels with different sensitivity to NP
- c) Measurement of same sides using channels with different sensitivity to NP

Redundancy, redundancy, redundancy!

3 ways to look for New Physics:

- a) Sides vs angles
- b) Measurement of same angle using channels with different sensitivity to NP
- c) Measurement of same sides using channels with different sensitivity to NP

The experiments:

B factories vs Tevatron

			BELLE	Diver 8008 Ear 350 BurleyTHNE fun Jun 11 Ha32et4 1919 Trigtl O befrier O HogD O BFrield 150 Big/er 2.01
	B factories	Tevatron	ß	
Experiments	BaBar at SLAC	D0 and CDF		
	Belle at KEK	$p\overline{p}$ @ $\sqrt{s} \sim 2 \text{ TeV}$		
Trigger	$\sigma_{b\overline{b}}$: $\sigma_{q\overline{q}} \sim 1:4$	$\sigma_{b\bar{b}}: \sigma_{inelastic} \sim 1:10^3$		
Multiplicity	$e^+e^- \rightarrow \Upsilon(4s) \rightarrow B\overline{B}$	High!		
Luminosity	$L > 10^{34} \text{ cm}^{-2}\text{s}^{-1}$	L~10 ³² cm ⁻² s ⁻¹	CDF	
	400/700 fb ⁻¹ (BaBar/Belle)	high x-sections \rightarrow high rates	A	
B hadrons	B ⁰ ,B ⁺ with $\beta\gamma\sim$ 0.5	$B_{\rm S}$, $\Lambda_{\rm b}$, $B_{\rm C}$,		
			(and	
			يطين 💏 المقدر	

Complementary capability

The Unitarity Triangle in 1999

3 ways to look for New Physics:

- a) Sides vs. angles
- b) Angle vs. angle
- c) Side vs. side

Some measurement of the sides, but no angles!

First goal of the B factories: measure the angles of UT

Time dependent CP asymmetry:

CP violation in B⁰ decays: $sin 2\beta$

For some modes, the amplitude of the $A_{CP}(t)$ is directly and simply related to the angles of the UT

Textbook example: $B^0 \rightarrow J/\Psi K_s$

1

Gabriella Sciolla – MIT

 A_{I}

t = 0

The golden mode for β : $sin2\beta$ in $B^0 \rightarrow J/\psi$ K^0

Gabriella Sciolla – MIT

Searching for New Physics in B Decays

17

The golden mode for β : sin2 β in B⁰ \rightarrow Charmonium K⁰

NP test #1: sides vs. angles

$sin 2\beta$ vs indirect UT constraints: pretty good agreement!

CKM mechanism is the dominant source of CPV at low energies

- New Physics does not show up in the golden mode \rightarrow SM reference
 - Compare with $sin 2\beta$ in independent modes with different sensitivity to NP

An independent measurement of β: The Penguin Modes

Decays dominated by gluonic penguin diagrams

• The typical example: $B^0 \rightarrow \phi K_S$

- No tree level contributions: theoretically clean
- SM predicts: $A_{CP}(t) = sin 2\beta sin(\Delta mt)$
- Impact of New Physics could be significant
 - New particles could participate in the loop \rightarrow new CPV phases
- Low branching fractions (10⁻⁵)
 - Measure A_{CP} in as many $b \rightarrow sq\overline{q}$ penguins as possible!
 - φK^0 , $K^+ K^- K_S$, $\eta' K_S$, $K_S \pi^0$, $K_S K_S K_S$, ωK_S , $f_0(980) K_S$

Gabriella Sciolla – MIT

Searching for New Physics in B Decays

21

NP test #2: β in penguins vs golden mode

NP test #3: sides vs. sides

The measurement of R_t

 $\Delta m_{d} = 0.5 \text{ ps}^{-1}$

 $\Delta m_{s} = 20 \text{ ps}^{-1}$

5 proper decay time, t [ps]

B_s/B_d oscillations

$$\frac{\Delta m_d}{\Delta m_s} \propto \left| \frac{V_{td}}{V_{ts}} \right|^2$$

- Theory error ~4% (Lattice)
- Δm_d is precisely measured
- But B_s mixing is very hard...

Gabriella Sciolla – MIT

Searching for New Physics in B Decays

0.1

Mixed Asymmetry 0-0.02

-0.1

Ó

B_d mixing

B_s mixing

2.5

24

10

7.5

Recent Tevatron results

What do we learn from mixing?

- One precise measurement of R_t improves our knowledge of the SM parameters (ρ,η)
- To go beyond the SM we need to be able to compare this measurement with independent constraints
 - Measurements of angle γ not mature enough for meaningful comparison

Need for independent measurement of V_{td}/V_{ts} with different sensitivity to New Physics

Gabriella Sciolla -

R_t from $B \rightarrow \rho \gamma$ and $B \rightarrow K^* \gamma$

• Radiative penguin decays with $b \rightarrow d\gamma$ and $b \rightarrow s\gamma$

New Physics Beyond the SM could take part in the loop and modify BFs...

Gabriella Sciolla – MIT

$B \rightarrow \rho \gamma$: analysis overview

- Two body decay
 - $p_{\gamma}^{CM} \sim m_B/2$
- Exclusive meson reconstruction
 - $\rho^0 \rightarrow \pi^+ \pi^-$
 - $\rho^+ \rightarrow \pi^+ \pi^0$
 - $\omega \rightarrow \pi^+ \pi^- \pi^0$
- Exclusively reconstruct B meson
 - Beam energy constrained mass *m*_{ES}

$$m_{ES} = \sqrt{E_{beam}^{*2} - p_B^{*2}}$$

Impose energy conservation: ∆E~0

$$\Delta E = E_B^* - E_{beam}^*$$

Gabriella Sciolla – MIT

$B \rightarrow \rho \gamma$: challenges

- Very small Branching Fractions
 - $B^0 \rightarrow \rho^0 \gamma \sim 0.5 \times 10^{-6}$
 - $B^+ \rightarrow \rho^+ \gamma \sim 1 \times 10^{-6}$
- Combinatorics from random pions
 - Γ(ρ) ~ 150 MeV
- Background from $B \rightarrow K^* \gamma$
 - Pion identification is a must
- Huge continuum background due γ from $\pi^0(\eta) \rightarrow \gamma_1 \gamma_2$
 - NN for continuum suppression is key
 - Veto photons from $\pi^0(\eta)$ decays

NN for continuum suppression

- Identify discriminating variables (30+)
 - Shape variables (e.g.: R2)
 - Properties of B decays (e.g.: Δz)
 - Decay products of other B (e.g.: p_{CMS} of leptons)

NN Output and performance

NN systematics

π^0 and η veto

- Explicitly rejects photon coming from $\pi^0(\eta) \rightarrow \gamma_1 \gamma_2$
 - Suppress both continuum and B backgrounds

Method

- Combine γ candidate with all other photons (γ_i) in event
- Obtain pdf(mass(γγ_ι), E_{γi})'s for signal and π⁰/η in continuum MC
- Cut on likelihood ratio

>ρ^

5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29 5.3

Signal extraction - BaBar

Maximum likelihood fit to signal + background (continuum + B)

Events / (0.00533333 GeV 01 02 05 05 05 05

- B $\rightarrow \rho \gamma$: 4D fit to m_{ES}, ΔE , NN, θ_{helicity}
- $B \rightarrow \omega \gamma$: 5D fit includes Dalitz angle

BaBar new results (316 fb⁻¹)

BaBar new results (316 fb⁻¹)

Belle's results (370 fb⁻¹)

Mode	$N_{\it signal}$	Significance	$BF(10^{-6})$
$B^+ o ho^+ \gamma$	8.5	1.6 0	$0.55^{\tiny +0.42 + 0.09}_{\tiny -0.36 - 0.08}$
$B^{ m o} o ho^{ m o} \gamma$	20.7	5.2σ	$1.25^{+0.37+0.07}_{-0.33-0.06}$
$B^0 \rightarrow \omega \gamma$	5.7	2.3σ	$0.56^{\tiny +0.34}_{\tiny -0.27}{}^{\tiny +0.05}_{\tiny -0.10}$
Combined	36.9	5.1 σ	$1.32^{+0.34+0.10}_{-0.31-0.09}$
• First observation of $B^0 \rightarrow \rho^0 \gamma$			↑ 25%

- Isospin test
 - Important because isospin conservation is assumed in combined fit
 - Probability of a larger isospin violation <4.9%

SM expectation B⁺ ~ 1.0 x 10⁻⁶ B⁰ ~ 0.5 x 10⁻⁶

Gabriella Sciolla – MIT

Summary of results: BaBar vs Belle

What do we learn? $B \rightarrow (\rho/\omega)\gamma$

 $BaBar(10^{-6})$ $Belle(10^{-6})$ $Average(10^{-6})$ $BF[B \to (\rho / \omega)\gamma] \quad 1.25^{+0.25}_{-0.24} \pm 0.09 \quad 1.32^{+0.34+0.10}_{-0.31-0.09} \quad 1.28^{+0.20}_{-0.19} \pm 0.06$

ρ

What do we learn? $B \rightarrow \rho \gamma$

 $BaBar(10^{-6}) \qquad Belle(10^{-6}) \qquad Average(10^{-6}) \\ BF(B \to \rho\gamma) \quad 1.36^{+0.29}_{-0.27} \pm 0.10 \quad 1.01^{+0.37}_{-0.32} \pm 0.07 \quad 1.22^{+0.23}_{-0.21} \pm 0.05$

New Physics at the B factories outside the UT $B^+{\rightarrow}\tau^+\nu_{\tau}$

Standard Model

$$BF(B^{+} \to \tau^{+} v) = \frac{G_{F}^{2} m_{B} m_{\tau}^{2}}{8\pi} \left(1 - \frac{m_{\tau}^{2}}{m_{B}^{2}}\right) f_{B}^{2} |V_{ub}|^{2} \tau_{B} \sim 10^{-4}$$

Lattice QCD

New Physics, e.g. Type II 2 Higgs Doublet Model

$$BF(B^+ \to \tau^+ \nu) = BF(B^+ \to \tau^+ \nu)_{SM} \times \left(1 - \tan^2 \beta \frac{m_{B^+}^2}{m_{H^+}^2}\right)^2$$

Gabriella Sciolla – MIT

$B^+ \rightarrow \tau^+ v$: analysis technique

- Exclusive reconstruction of the other B in the event
- All particles left in the event must belong to the other B
- τ^+ reconstructed in the following final states:

 $\tau^+ \rightarrow \rho^+ \nu, \mu^+ \nu \nu, e^+ \nu \nu, \pi^+ \nu \nu$

Constraints on NP from $B \rightarrow \tau v$

Average of latest BaBar + Belle results:

Inclusive BF(b \rightarrow s γ)

- A sensitive probe of New Physics
 - Example: diagrams contributing in MSSM

- Many variables can be measured
 - Inclusive BF (b \rightarrow s g), direct A_{CP}, Time Dependent A_{CP}, ...

Gabriella Sciolla – MIT

B \rightarrow s γ : experiment

Bounds on M_{H+} in Type II 2HDM

Conclusion

- The abundant and clean dataset from the B factories allows us to test the SM in many different ways
 - Sides vs. Angles
 - Angles: trees vs. penguins
 - Sides: B mixing vs $B \rightarrow \rho \gamma$ (New!)
- Rare decays add independent constraints
 - E.g.: $B \rightarrow \tau \nu$ or $B \rightarrow s \gamma$
- New Physics is still hiding:
 - ... should we give up hope?

$$\frac{m_{\rm W}}{\Lambda_{\rm NP}} \sim \frac{100 \; {\rm GeV}}{1 \; {\rm TeV}} \sim 10\%$$

- Precision of ~few% needed
- Can these precisions ever be reached?
 - Almost there for several measurements

How well do we know SM parameters?

Gabriella Sciolla – MIT

Gabriella Sciolla – MIT